

DPG Spring Meeting / European Physics Nuclear Conference Bochum HK 40.3 March 19, 2009

Design Optimisation for (the Silicon Micro-Strip Part of) the PANDA Micro-Vertex-Detector *

Thomas Würschig on behalf of the PANDA MVD group

* Work supported by BMBF and EU FP6

Introduction

- Micro-Vertex-Detector (MVD)
 - Tracking detector for charged particles
 - Innermost detector in PANDA
 - Main tasks
 - (1) Improvement of momentum resolution
 - (2) High vertex resolution for primary interaction vertex and secondary vertices of short lived particles and delayed decays
 - (3) Additional input for particle-ID

Target spectrometer

Motivation

- General MVD layout fixed
 - Number of layers
 - > Detector type
 - > Overall geometry
- Detailed implementation
 - Detector: shape, dimensions
 - > Hybridisation
 - Support structure
 - Cooling, cabling and routing concept
 - > Alignment ... integration / interplay with other subsystems

Extraction of **design parameters** in order to **qualify** dedicated concepts in terms of **physics performance**

Design parameters enable optimisation of the detector

Innermost detector in PANDA:

- Low material budget, notably in forward direction
 - → Material mapping
 - → Radiation lengths
 - → Scattering effects

Tracking detector:

- Maximum spatial coverage
- Sufficient number of hit points
 - → Number of hit points / track
 - Design goal: 4 points per track
 - > 1st point close to vertex
 - Last point close to outer tracker

a

b

Vertex resolution:

- Number and position of track points (w.r.t. vertex)
- Spatial resolution of single track points
 - → Size of readout structure
 - → Sensor arrangement ...

Additional input for PID:

- Analogue information for single hit points
 - → Energy deposition
 - (→ Calculation of hit position ... see above)
 - \rightarrow Resolution
 - \rightarrow d_{eff} (sensor thickness, incident angle of track)
 - → Signal-to-Noise as function of d_{eff} ...

C

- → Number of hit points / track (N_{trk-pt})
 → Spatial distribution of (N_{trk-pt} / track)
- → Spatial distribution of material load
 → Mapping of scattering effects
- → Count rate studies
- → Single hit resolution
- → Track resolution
- \rightarrow Vertex resolution
- → Simulation of physics channels (*R. Jäkel*, HK 25.7)

Track-point studies

Comparison for different particles and excess energy

- Implementation of realistic CAD model
- Simulation includes:
- Full material budget
- Magnetic field

Track-point studies

- Spatial distribution of MVD points / track
 - Inhomogeneities: (a) Target pipe, (b) module positioning,
 (c) strip-sensor gap in barrel layers, (d) sensor overlap, ...

Track-point studies

Detector optimisation: Comparison of different implementations

- Visualisation and correction of gaps
- > Reduction of material: Limitation of track points
- Homogenous distribution in the barrel part

MVD layer: Point resolution

- Study of multiple scattering with particle propagator
 - Geane (based on Geant3)
 - Example:
 π⁺, 0.5 GeV / c
 → Barrel layer
 - Plotting the deviation due to scattering (Δ)

$$\Delta = |\vec{r}_{SIM} - \vec{r}_{IDEAL}|$$

DPG / EU.. Spring meeting Bochum , March 19, 2009 Thomas Würschig, Design Optimisation for the PANDA Micro-Vertex-Detector

Vertex resolution studies

- Single track vertex resolution for different readout structures (pixel cell size/ strip pitch)
 - > Example: fixed pixel cell size π^{-} , (0.2 ... 3) GeV / c $p = 100 \times 100 \,\mu m^2$ ▲ d0 80 \rightarrow Fixed pixel cell size 70 ▲ z0 \rightarrow Variation of strip pitch 60 50 > Analysis: 40 \rightarrow Vertex resolution 30 parameters (d_0, z_0) 20 No significant improvement 10 below 250 µm strip pitch due 0 100 200 300 400 500 pitch / µm to scattering in precedent layers

DPG / EU.. Spring meeting Bochum , March 19, 2009 Thomas Würschig, Design Optimisation for the PANDA Micro-Vertex-Detector

- 13 -

Impact on MVD strip part

- Validation of sensor size and readout pitch
 - Barrel part:
 - ✓ Rectangular shape, stereo angle 90°, pitch: 130 µm
 - Forward part:
 - \checkmark Trapezoidal shape, stereo angle 15°, pitch: 70 μm
- Disk concept

Barrel support

Summary

- Overall MVD layout fixed
- Work on detailed implementation started
- Design parameters to verify physics performance of detector → Detector optimisation
- Tools for studies and analysis available (Physics and engineering simulations)
 - \rightarrow Set of input parameters must be chosen carefully

Physics guidance of engineering implementation ensure an optimised detector development

