

DPG-Frühjahrstagung Hadronen und Kerne, HK 25 Darmstadt 2008

Design-Studien für den PANDA Mikro-Vertex-Detektor (MVD)

* unterstützt von der EU unter Dirac FP6 und dem BMBF

Thomas Würschig

Kai-Thomas Brinkmann, René Jäkel, Ralf Kliemt, Felix Krüger, Robert Schnell, Hans-Georg Zaunick

Institut für Kern- und Teilchenphysik, TU Dresden

Motivation

- Erstellung des Detektor-Designs für den PANDA-Mikro-Vertex-Detektor
 - Berücksichtigung der physikalischen Anforderungen und Vorgaben
 - Beachtung der spezifischen Messbedingungen
 - Gewährleistung der technischen Realisierbarkeit
 - Ableitung des Sensor-Designs f
 ür die Prototypen-Entwicklung der Silizium-Streifen-Detektoren

Einleitung

Einleitung

PANDA-Experiment
 Fixed-Target-Experiment
 Strahl: Antiprotonen (p̄)
 Target: Wasserstoff
 Schwere Kerne

Luminosität: $\leq 2 \cdot 10^{32}$ / cm² s Ereignisrate: $\leq 10^7$ / s Strahlimpuls: (2 ...15) GeV / c

Einleitung

Vertex-Geometrie

Allgemeine Anforderungen

- Hohe Granularität und Ortsauflösung
 (D-Identifizierung: Vertexauflösung ~ 50 μm)
- Zeitauflösung < 20 ns
- Strahlungsresistenz: ≤ 10 Gy = 1 Mrad (TID) (Gesamtbelastung,10 Jahren Laufzeit)
- Geringe Massenbelegung
- dE/dx-Information f
 ür Teilchenidentifikation

→ Einsatz von Silizium-Halbleiter-Detektoren

Spezifische Bedingungen

- Stark unterschiedliche Ereignisraten an verschiedenen Stellen des MVD
- Extrem hohe Datentransferbreite auf Grund hoher Granularität
- Hohe Verlustleistung auf kleines Volumen konzentriert → Optimierung erforderlich
- → Pixeldetektoren f
 ür Vertex-nahe Bereiche
 → Doppelseitige Streifendetektoren in
 äußeren Detektorlagen

Physikalische Vorgaben

olarwinkel

- Anisotrope Ereignisverteilung
 - Vorwärtsbereich:
 Hohe Spurdichte
 hochenergetischer
 Teilchen
 - Rückwärtsbereich:
 Niederenergetische
 Teilchen aus Zerfällen
- Mindestens 3 Punkte zur Spurerkennung
 - Erster Punkt: Vertex-nah
 - Letzter Punkt: Information für äußeren Spurdetektor

Grundgeometrie

Mechanisches Modell

Maßstab 1:1

- Realistischere Umsetzung der Grundgeometrie f
 ür MVD-Streifenteil
 - Sensoranordnung
 - Halterungsstruktur
 - Berücksichtigung von
 Volumina für Elektronik und Kühlung
- Pixellagen schematisch eingebunden

Realisierung

Realisierung: Streifenmodule

Realisierung: Fasslagen

Realisierung: Fasslagen

Anordnung entlang der Strahlachse (z-Achse)

- Realisierung der Durchführung für das Targetrohr:
 - → 2 verschiedene Sensor-Modulgrößen
 - → Verschiebung von Super-Modulen
- » Wichtig:
 - Auf Grund dünner Strukturen der Rohre im Vertex-Bereich **Kontakt freie** Durchführung gefordert

Realisierung: Vorwärtsteil

Gemischte Scheibe (Pixel- und Streifendetektoren):
 4 Ebenen (2 Pixel / 2 Streifen) bzgl. z-Position

Realisierung: Halterung

Verstrebte Endkappen-Struktur aus Karbonfasern

Design: Streifen-Sensor

- Geometrische Vorgaben
 - Grundformen und Stereowinkel
 - a) Rechteckig, 90° Stereowinkel (Fasslagen)
 - b) Trapezförmig, 15° Stereowinkel (Scheiben)
- Optimierung von Sensor-Dimensionen und Pitch
 - > Anordnung bzgl. Strahlachse \rightarrow Sensorlänge (a)
 - Radiale Symmetrie, \rightarrow Sensorbreite (a)
 Sensor-Überlapp \rightarrow Sensorhöhe / -breite (b)
 - ▹ Anzahl von Frontend-Chips pro Seite ⇔ Pitch

 \rightarrow Sensorlänge / -breite (a)

 \rightarrow Sensorbreite (b)

> Anzahl von Sensoren / Wafer ⇔ Sensorgröße

Design: Streifen-Sensor

сш

0 b lateral resolution σ₁′

10²

10

p/MeV

Festlegung minimaler Streifenabstände

Kriterium: Kleinwinkelstreuung vorheriger Detektorlagen

5(⊖) / rad

10-1

10⁻²

10⁻³

 10^{-4}

800 um Silicon

10²

Proton mit 1GeV/c : ~ 2mrad mittlere Ablenkung in 1 mm Silizium

ightarrow 20 µm Ablenkung / 1 cm Flugstrecke

Proton mit 500MeV/c : **0.6 mm** mittlere Ablenkung nach **10 cm** Flugstrecke durch Streuung an 2 Sensorlagen (**800 μm**)

 10^{3}

Mittlere Ablenkung in Abhängigkeit vom Teilchenimpuls

Design: Streifen-Sensor

Sensor-Design

Zusammenfassung

- Erstellung eines Modells f
 ür PANDA-MVD-Detektor als Vorlage f
 ür:
 - ▷ Detektorsimulationen → Optimierung bzgl. der physikalischen Anforderungen
 - Stress- und Temperaturanalysen sowie Materialwahl
 Junsetzung der ingenieurstechnischen Anforderungen
- Vorgabe des Designs für Streifensensor-Prototypen
- Modifikationen und Verifikation:
 - > Messungen (z.B. mit DTS1 → HK 25.8)
 - > Simulationsergebnisse
 - Globales Halterungskonzept bei PANDA
 - > Frontend-Elektronik \rightarrow Dimensionierung des Kühlsystems

