

A Read-out System for the PANDA MVD Prototypes

DPG-Frühjahrstagung 2017 - HK 63.8

Alessandra Lai, Tobias Stockmann, James Ritman, IKP1-Forschungszentrum Jülich, March 31, 2017

PANDA@FAIR

Facility for Antiproton and Ion Research

MVD: Micro Vertex Detector

- free running readout @clk freq 160 MHz
- vertex resolution < 100 µm

- time information < 10 ns
- deposited energy information for PID with *dE/dx*
- four barrel layers
- six disk layers in the fw direction
- pixel detectors in the inner part
 → front-end chip: ToPix
- double-sided strip detectors in the outer part
 - \longrightarrow front-end chip: PASTA

High performance and flexible DAQ needed for ToPix and PASTA.

JDRS: Jülich Digital Readout System

The basic components

Data conversion and communication with the PC:

- DUT: ToPix, PASTA
- evaluation board: Xilinx ML605 (Virtex-6 FPGA)
- firmware: VHDL

Configuration and data handling:

- PC
- software: C++
- MVD Readout Framework (MRF)
- Qt-based GUI

MRF: MVD Readout Framework

Four abstraction layers isolate low level from higher level functions:

- Physical Layer
 - \longrightarrow ethernet connection between ML605 and PC
- Transport Access Layer
 → board-specific functions
 e.g. the clock generation, flush of data buffers...
- Chip Access Layer
 - \longrightarrow DUT-specific functions
 - e.g. configuration and data readout...

PASTA: PANDA Strip Asic

Free running readout chip for the strips

Concept based on TOFPET ASIC.

- Developed for medical application.
- Readout of SiPM.

Time over threshold measurement based on two leading-edge discriminators.

- Low threshold time branch: resolve leading edge of pulse(time stamp resolution).
- High threshold energy branch: reduce jitter on the falling edge.

Timestamps

- Clock resolution: 6.25 ns (@160 MHz) coarse timestamp.
- Enhanced resolution: up to 50 ps fine timestamp.

Data Collection and Transfer

- Event data is stored in frames.
- Formatted with header/trailer.
- Continuous stream of data over the tx lines.
- 8b/10b encoding to ensure a DC-balanced line.
- Use of control symbols(comma words) between frames.

Data Handling

- FPGA data handling:
 - 10b/8b decoded data stored in FIFO.
- Software data handling:
 - request data from fifo;
 - store raw data on disk;
 - convert data word into usable object.

athname					
oftware/GUI_modules	/daqReader/readoutData/decode/				
lename:					
test dat	🖌 suppress comma words				
	✓ display frame indicator				
Save using	suppress empty frames				
✓ ASCII					
boost serial.	readout iterations 200 😩				
	current iteration				
	start readout stop readout				

- Suppress comma words.
- Display frame indicator.
- Suppress empty frames.

Online Monitoring

The data is decoded online.

The results are published on a web server using the THttpServer class from ROOT.

Online Monitoring

Energy spectrum — beta source

tot coarse

A.Lai | A Read-out System for the PANDA MVD Prototypes | March 31, 2017

Configuration of the Internal Test Pulse

PASTA can generate a test pulse internally. Two possibilities:

- test pulse used directly instead of the discriminator output (digital signal);
- test pulse fed throught the analog calibration circuit (analog signal).

	ltem	Pos	Len	Min	Мах	Set Value
1	NPulses	0:9	10	0	1023	0
2	Pulse Lenght	10.17	8	0	265	0
3	Pulse Spacing	1825	8	0	255	0

	ltern	Pos	Len	Min	Max	Set Value
1	Channel address	8:13	6	0	63	0
2	Enable cal circuit	0	1	0	1	0
3	Probing signals from ch to pad	7	1	0	1	0
ā	Puise amplitude	1:6	6	G	63	0

Configure Global TP

Configure Internal TP

Channel Scan

- PASTA has 46 global and 22 local free parameters.
- Automatize the measurements for the optimization of such parameters.
- **1** Define the type of injection.
- 2 Scan a user define range of channels.
- 3 Choose up to two parameters to sweep.

● test pulse to TDC (digital) ● test pulse to front-end (analog)	✓ two param scan First Loop Second Loop
h start 0 \$ th stop 63 \$ urr ch	HCGDACn ▼ HCGDACp ▼ start 0 ↓ stop 15 ↓ stop 15 ↓

Summary & Outlook

- The PANDA MVD will use pixel and strip detectors.
- Two front-end chips: the Torino Pixel ASIC (ToPix) and the PANDA Strip ASIC (PASTA).
- A DAQ system able to perform systematic lab measurement and to work on a beam test environment is under development (JDRS).
- The system is designed such that the modifications required when passing from one prototype to another are minimal.
- The DAQ will be operating, together with PASTA, under beam this spring.

Backup

A.Lai | A Read-out System for the PANDA MVD Prototypes | March 31, 2017

Time amplification

i.e. how to get the enhanced resolution.

5.5.1.2 Time Amplification

The ASIC has an internal counter incremented by the clock to generate time stamps. Just using this counter to time events would lead to a precision based on the clock's period, or 6.25 ns for an input clock of 160 MHz. With the chosen scheme of converting the phase between a trigger and the clock into a proportional voltage drop and then recharge this, a time amplification is gained.

Two factors influence this amplification: a larger capacitance for the second capacitor

$$C_{\text{TDC}} = 4 \cdot C_{\text{TAC}} \qquad (5.2)$$

and a lower recharging current

$$I_{TDC} = \frac{1}{32} \cdot I_{TAC}$$
, (5.3)

Using the relation for charge in a capacitor and constant currents

 $C \cdot U = Q = I \cdot t$

one gets the gain of this method for the time after the process (t_{TDC}) versus the time before (t_{TAC}) by assuming the voltage level is equal after connecting both capacitors:

$$\frac{I_{\text{IAC}} \cdot t_{\text{IAC}}}{C_{\text{IAC}}} = U_{\text{TAC}} = U_{\text{TAC}} = \frac{I_{\text{TDC}} \cdot t_{\text{IDC}}}{C_{\text{TDC}}}$$

$$\Rightarrow t_{\text{TDC}} = t_{\text{TAC}} \cdot \frac{I_{\text{IAC}}}{I_{\text{TDC}}} \cdot \frac{C_{\text{TDC}}}{C_{\text{TAC}}}$$

$$\stackrel{(5.2)@(5.3)}{=} = t_{\text{TAC}} \cdot 32 \cdot 4 = t_{\text{TAC}} \cdot 128 . \quad (5.4)$$

A.Lai | A Read-out System for the PANDA MVD Prototypes | March 31, 2017