

The PANDA Strip ASIC: PASTA

Alessandra Lai on behalf of the PANDA MVD group, IKP1-Forschungszentrum Jülich, August 9, 2017

PANDA @FAIR

The PASTA chip

JDRS: Jülich Digital Readout System for the MVD

Quantitative Measurements

Summary

PANDA@FAIR

Facility for Antiproton and Ion Research

MVD: Micro Vertex Detector

- free running readout @clk freq 160 MHz
- vertex resolution < 100 μ m

- time information < 10 ns
- deposited energy information for PID with *dE/dx*
- four barrel layers
- six disk layers in the fw direction
- pixel detectors in the inner part
 → front-end chip: ToPix
- double-sided strip detectors in the outer part
 - \longrightarrow front-end chip: PASTA

PASTA: PANDA Strip Asic

Free running readout chip for the strips

Concept based on TOFPET ASIC.

- Developed for medical application.
- Readout of SiPM.

Time over threshold measurement based on two leading-edge discriminators.

- Low threshold time branch: resolve leading edge of pulse (time stamp resolution).
- High threshold energy branch: reduce jitter on the falling edge.

From TOFPET to PASTA

	TOFPET v1	PASTA v1
Input capacitance/charge	SIPM: 320 pF / 300 pC	Si Strips: 50 pF / 38 fC
Power consumption	7-8 mW/ch	< 4 mW/ch
Channel pitch	104 μ m	63 μ m
Radiation tolerance	n/a	100 kGy
Efficiency gap	ca. 6% evt loss	no evt loss
Charge resolution	less important	8 bit dyn. range

Additional changes:

- Switch to area optimized technology (110 nm).
- Rewritten control logic.

PASTA Architecture

- Amplification and discrimination.
- Time interpolation.
- Control charge conversion and initiate timestamp storing.
- Handle configuration and channel data.

Auxiliary circuits:

- Calibration circuit: configurable test pulse generation.
- Output drivers: conversion of outgoing signals to LVDS standard.
- Bias cells: voltage levels for analog components.

Front-End

- Preamplifier: amplification of small current signal from sensor.
- Current buffer: second amplification and impedance adjustment.
- TOT stage: third amplification, improved linearity of the system, saturated amplifier.
- Hysteresis comparator: comparison with threshold voltage (different for rising and falling edge).

Analog Time to Digital Converter (TDC)

- Clock resolution: 6.25 ns (@160 MHz) coarse timestamp.
- Enhanced resolution: up to 50 ps fine timestamp.

Digital blocks

- TDC controller:
 - interface between analog circuitry and digital storing/trasmission of data;
 - detects valid events and store measurement for them;
 - size reduced by 80% wrt TOFPET;
 - power consumption reduced by half wrt TOFPET;
 - radiation-hard logic for Single Event Upset (SEU) protection.

- Global controller:
 - configuration interface;
 - clock distribution;
 - global time counter;
 - test pulse generation;
 - channel multiplexing;
 - data collection and transfer.

JDRS: Jülich Digital Readout System

The basic components

Data conversion and communication with the PC:

- DUT: ToPix, PASTA
- evaluation board: Xilinx ML605 (Virtex-6 FPGA)
- firmware: VHDL

Configuration and data handling:

- PC
- software: C++
- MVD Readout Framework (MRF)
- Qt-based GUI

Data Collection and Transfer

- Event data is stored in frames.
- Formatted with header/trailer.
- Continuous stream of data over the tx lines.
- 8b/10b encoding to ensure a DC-balanced line.
- Use of control symbols (comma words) between frames.

Data Handling

- FPGA data handling:
 - 10b/8b decoded data stored in FIFO.
- Software data handling:
 - request data from fifo;
 - store raw data on disk;
 - convert data word into usable object.

athname	
oftware/GUI_modules	/daqReader/readoutData/decode/
lename:	
test dat	🖌 suppress comma words
	✓ display frame indicator
Save using	turness amely frames
✓ ASCII	
boost senal.	readout iterations 200 💲
	current iteration
	start readout stop readout

- Suppress comma words.
- Display frame indicator.
- Suppress empty frames.

Online Monitoring

The data is decoded online.

The results are published on a web server using the THttpServer class from ROOT.

Configuration of the Internal Test Pulse

PASTA can generate a test pulse internally. Two possibilities:

- test pulse used directly instead of the discriminator output (digital signal);
- test pulse fed throught the analog calibration circuit (analog signal).

	ltem	Pos	Len	Min	Мах	Set Value
1	NPulses	0:9	10	0	1023	0
2	Pulse Lenght	10.17	8	0	265	0
3	Pulse Spacing	1825	8	0	255	Q

	ltem	Pos	Len	Min	Мах	Set Value
t	Channel address	8:13	6	0	63	0
2	Enable cal circuit	0	1	0	1	0
3	Probing signals from ch to pad	7	1	0	1	0
ā	Puise amplitude	1:6	6	G	63	0

Configure Global TP

Configure Internal TP

Channel Scan

- PASTA has 46 global and 22 local free parameters.
- Automatize the measurements for the optimization of such parameters.
- **1** Define the type of injection.
- 2 Scan a user define range of channels.
- 3 Choose up to two parameters to sweep.

 test pulse to TDC (digital) test pulse to front-end (analog) 	✓ two param scan First Loop	Second Loop
h start 0 0 start	HCGDACn v start 0 15 4 step 1 4	HCGDACp start 0 stop 15 step 1 1
		tartscan

Performance Measurements

Measurement to charachterize the chip are currently ongoing:

- in the laboratory;
- under beam (next fall).
- Focus on the coarse information for both time and energy branch.
- No detailed studies on the TDC yet.
- Operation frequency is half of the nominal one (i.e., 80 MHz).

Channel Response

Scan of all the channels for fixed amplitude.

Not all the channels are responsive.

A.Lai | The PANDA Strip ASIC: PASTA | August 9, 2017

ToT Linearity

Scan of all the channels within a given amplitude range. Only coarse information used.

$$ToT = t_{coarse_E} - t_{coarse_T}$$

Threshold determination

Amplitude incoming signal > threshold \longrightarrow signal detected

- Global threshold: $\Delta_{th} = HCGDAC_{+} HCGDAC_{-}$
 - \longrightarrow midvalue of an interval with predefined amplitude.
- Local threshold: fine tuning.
- Sweep over Δ_{th} at fixed pulse amplitude \rightarrow expected: S-curve shape.

- S-curve structure only for some channels
 - \longrightarrow box distribution even for small amplitudes.
- Different optimal values for different channels.

Threshold distribution

Find the combination of $HCGDAC_+$ and $HCGDAC_-$ to maximize nEv. Fixed pulse amplitude.

Summary & Outlook

- The PANDA MVD will use pixel and strip detector.
- For the strip, part the PASTA chip was designed.
- It is inspired from the TOFPET ASIC, but it fulfills specific requirement of the MVD.
- A dedicated readout system is under development at FZJ.
- Measurement to assess the performances of the chip have started and are still ongoing.
- Preliminary results hint to the fact that the measurement principle is working in PASTA.
- More optimization is needed: aim for a PASTA version 2.

Backup

A.Lai | The PANDA Strip ASIC: PASTA | August 9, 2017

Time amplification

i.e. how to get the enhanced resolution.

5.5.1.2 Time Amplification

The ASIC has an internal counter incremented by the clock to generate time stamps. Just using this counter to time events would lead to a precision based on the clock's period, or 6.25 ns for an input clock of 160 MHz. With the chosen scheme of converting the phase between a trigger and the clock into a proportional voltage drop and then recharge this, a time amplification is gained.

Two factors influence this amplification: a larger capacitance for the second capacitor

$$C_{\text{TDC}} = 4 \cdot C_{\text{TAC}} \qquad (5.2)$$

and a lower recharging current

$$I_{TDC} = \frac{1}{32} \cdot I_{TAC}$$
, (5.3)

Using the relation for charge in a capacitor and constant currents

 $C \cdot U = Q = I \cdot t$

one gets the gain of this method for the time after the process (t_{TDC}) versus the time before (t_{TAC}) by assuming the voltage level is equal after connecting both capacitors:

$$\frac{I_{\text{IAC}} \cdot \tau_{\text{IAC}}}{C_{\text{IAC}}} = U_{\text{TAC}} = U_{\text{TOC}} = \frac{I_{\text{TDC}} \cdot \tau_{\text{IDC}}}{C_{\text{TDC}}}$$

$$\Rightarrow t_{\text{TDC}} = t_{\text{TAC}} \cdot \frac{I_{\text{IAC}}}{I_{\text{TDC}}} \cdot \frac{C_{\text{IDC}}}{C_{\text{TAC}}}$$

$$\stackrel{(5.2)\,\text{a}(5.3)}{\Rightarrow} = t_{\text{TAC}} \cdot 32 \cdot 4 = t_{\text{TAC}} \cdot 128 . \quad (5.4)$$