Radiation Hardness of capacitors

The examined capacitors

- Taiyo Yuden,
 100nF,
 6.3V rated voltage,
 0.6mm*0.3mm²(0201)
- Kemet,
 100nF,
 16V rated voltage,
 1mm*1.5mm²(0402)
- Kemet,
 100nF,
 16V rated voltage,
 1.6mm*0.8mm²(0603)

Radiation @TU Delft

A batch of each capacitor-type has been irradiated with neutrons at the reactor of TU Delft.

energy range	$fluence [rac{neutrons}{cm^2}]$
thermal neutrons ($< 100 \text{ meV}$)	$1,656 \cdot 10^{17}$
epithermal neutrons (< 1 eV)	$1,602 \cdot 10^{15}$
fast neutrons(< 20 MeV)	$1,1664 \cdot 10^{16}$

Strong activation after radiation

>800 $\frac{\mu Sv}{h}$ at day 4 after irradiation make it impossible to immediatly start the electrical analysis.

Gamma spectra can be taken at that time.

Neutron activation analysis, 0603

Neutron activation analysis, 0201

Neutron activation analysis

$T_{1/2} [d]$	$\sigma_{\rm n,th.}$ [b]
13,6	0,13
2,9	0,29
27,7	15,9
249,8	91,1
39,3	1,27
2,7	5,8
70,9	
15h	0,53
$1,25 \cdot 10^9 \text{ a}$	2,1
	13,6 2,9 27,7 249,8 39,3 2,7 70,9 15h

nuclides, 0201	$T_{1/2}$ [d]	$\sigma_{\rm n,th.}$ [b]
$^{165}\mathrm{Ho} ightarrow ^{166}\mathrm{Ho}$	26,82	64,7
$^{130}\mathrm{Ba} \rightarrow ^{131}\mathrm{Ba}$	11,5	8,7
$^{116}\mathrm{Sn} \rightarrow ^{117}\mathrm{Sn}$	13,6	0,13
$^{121}\mathrm{Sb} \rightarrow ^{122}\mathrm{Sb}$	2,7	5,8
$^{123}\mathrm{Sb} \rightarrow ^{124}\mathrm{Sb}$	60,2	3,9
⁵⁸ Co	70,9	

The use of low neutron capture cross section materials is preferred for PANDA.

Leakage current

Leakage current

Leckstrom

All irradiated capacitors show a higher leakage current than their non-irradiated equals, but only at voltages above their rated voltage. 0603 - capacitors

irradiated non-irradiated

Rated voltage

capacitance

f[Hz]

Conclusion

Even though the 0201-capacitors showed the biggest changes in capacitance and leakage current due to irradiation, they are still the best choice because of their lower activation.

A larger number of 0201-capacitors should be examined to determine if the seen behavior is typical for all 0201-capacitors or for capacitors of this manufacturer (Taiyo yuden).

Thank you for your attention!