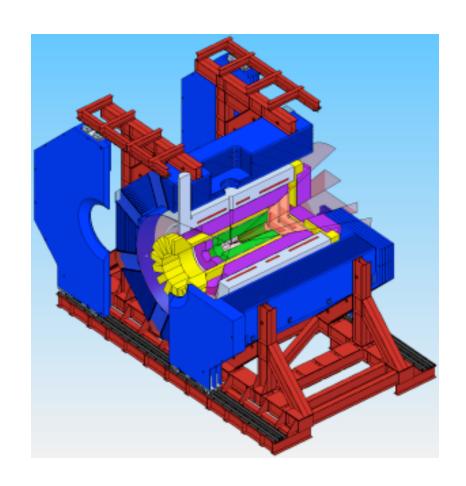

PANDA Magnets

Template for presentations concerning the magnet design at PANDA

Spectrometer Magnets at PANDA

- Prerequisite for momentum reconstruction and PID
- Ideal combination
 - 2T central solenoid field
 - 1T forward dipole field
- Technical Design Report (reviewed May 2009):

arXiv:0907.0169

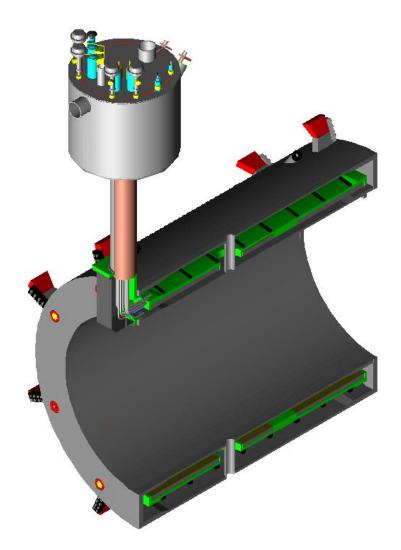

Superconducting Solenoid

- Challenges
 - 2T field
 - 4m x 1.9m free space
 - High field homogeneity
 - Target pipe intersection
 - Access on both sides
 - Movement by 20m
 - Muon range system

Central field	2.0 T	
Field homogeneity	≤2%	
Norm. radial field integral	≤2 mm	
Inner bore	1.9 m	
Cold mass parameters		
Length	2.7 m	
Energy	20 MJ	
Current	5000 A	
Weight	4.5 t	
Cable cross section	$3.4 \times 2 \text{ mm}^2$	
Current density	59 A/mm	
Yoke parameters		
Length	4.9 m	
Outer radius	2.30 m	
Iron layers	13	
Total weight	300 t	

Superconducting Solenoid

- Flux Return Yoke
 - shape homogeneous field
 - muon range system
 - barrel: 13 layers
 - forward doors: 5 layers
 - opening doors
 - accommodate target
 - retractable to parking position (20m)
 - reproducible positioning

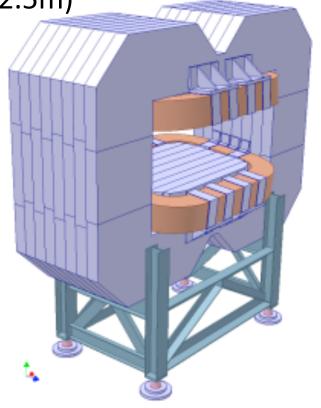

Superconducting Solenoid

Coil

- Internally wound on mandrel
- Al stabilised Rutherford cable
- split coil: 3 sections allowing target intersection
- indirect cooling

Cryostat

- asymmetric warm bore
- mounting structure for detectors


Large Aperture Dipole

- 2Tm for particles scattered in $0 10^{\circ}$ (5° vertical)
- Allows momentum resolution <1%

Large aperture (1x3m) and short length (2.5m)

Ramping capability due to lamination

Field integral	2 Tm
Bending variation	≤ ±15%
Vertical Acceptance	±5°
Horizontal Acceptance	±10°
Ramp speed	1.25%/s
Total dissipated power	360 kW
Total Inductance	0.87 H
Stored energy	2.03 MJ
Weight	220 t
Dimensions $(H \times W \times L)$	$3.88 \times 5.3 \times 2.5 \text{ m}^3$
Gap opening (H × W)	$0.80 - 1.01 \times 3.10 \text{ m}^2$

