Development of Front-End Electronics for Straw Tubes

Dominik Przyborowski, Marek Idzik

AGH University of Science and Technology

April 26, 2011

Outline

- Motivation
- Front-End Architecture and Specifications
- Simulations results
- 4 Layout
- Conclusions

Motivation

Goals for Front-End Design

- Time measurements with 1-2 ns resolution.
- Energy meaurement (ToT or Amplitude).
- Low noise Threshold for discriminator (5 σ) \approx 2 fC.

Main Difficulties to Overcame

- Detector signal shape:
 - Long ion tail tail cancellation circuit is needed.
 - Variable detector pulse shape for good time resolution short peaking time needed.
- Fluctuations of baseline caused by: high count rate, temperature and residuals from tail cancellation ⇒ baseline stabilisation is needed.

Front-End design is difficult

Motivation

Goals for Front-End Design

- Time measurements with 1-2 ns resolution.
- Energy meaurement (ToT or Amplitude).
- Low noise Threshold for discriminator (5 σ) \approx 2 fC.

Main Difficulties to Overcame

- Detector signal shape:
 - Long ion tail tail cancellation circuit is needed.
 - Variable detector pulse shape for good time resolution short peaking time needed.
- Fluctuations of baseline caused by: high count rate, temperature and residuals from tail cancellation ⇒ baseline stabilisation is needed.

Front-End design is difficult!

Motivation

Goals for Front–End Design

- Time measurements with 1-2 ns resolution.
- Energy meaurement (ToT or Amplitude).
- Low noise Threshold for discriminator (5 σ) \approx 2 fC.

Main Difficulties to Overcame

- Detector signal shape:
 - Long ion tail tail cancellation circuit is needed.
 - Variable detector pulse shape for good time resolution short peaking time needed.
- Fluctuations of baseline caused by: high count rate, temperature and residuals from tail cancellation ⇒ baseline stabilisation is needed.

Front-End design is difficult!

Motivation FE Arch. Simulations results Layout Conclu

FE Architecture Specifications

- ullet 1st prototype technology AMS C35B4 $0.35~\mu\mathrm{m}$
- 2 output signals Timing and Time-over-Threshold, Amplitude It is not final configuration, only for studies
- Preamplifier with variable gain and time constants
- \bullet CR–RC² Shaper with variable $\rm T_{\rm peak}$ default \approx 20 ns for delta pulse
- Ion tail cancellation circuit with trimming
- Baseline stabilized by BLH circuit
- Leading edge discriminator for time measurements
- Fast LVDS output

FE Architecture Specifications

More detailed specification

Parameter	Range/Value
Charge gain [mV/fC]	3 – 20
Peaking time (for delta) [ns]	15–40
Power consumption [mW]	≈ 16
ENC [fC]	< 0.4
$1^{ m st}$ TC time constant [ns]	20 - 500
$2^{ m nd}$ TC time constant [ns]	3 – 40
Input transistor parameters	
Dimensions W/L	$2000\mu/0.35\mu$
Transconductance [mS]	≈ 26
Drain current [mA]	2

Charge gain depends very much on tail canncellation circuit settings (through voltage gain of last shaper stage)

Reference detector pulse used in simulations

Time-Over-Threshold

Depends significantly on tail cancellation settings

Layout

4 channels 1^{st} prototype. Chip size: $1.5~ imes~1.3~\mathrm{mm}^2$

Conclusions

- 1st Front-End prototype is designed and submitted.
- 1-2 ns time resolution can be achieved.
- Energy measurement using Amplitude or ToT available for studies.
- Impuls width (1%) for default settings is \approx 150 ns \Rightarrow few MHz counting rate is achievable.

Warning

miniASIC submission done during transition between Cadence (and simulators) versions to catch—up April deadline, some disagreements between different simulators — presently under study. In worst case would need to be resubmitted in july.