

Central Straw Tube Tracker Overview

Peter Wintz
(for the PANDA-STT group)

Outline

- STT Design
- Testsystems
- Readout issues
- Summary

Straw Tube Design

Straw tube materials:

- Al-mylar film, $d=27\mu m$, $\varnothing=10mm$, L=1500mm
- 20µm sense wire (W/Re, gold-plated)
- End plug (ABS thermo-plastic)
- Crimp pin (Cu, gold-plated)
- Gas tube (PVCmed, 150µm wall)
- Cathode spring contact (Cu/Be, gold-plated)
- Locator ring (POM)
- Attachment strip (GFK) with electric ground
- 2.5g weight per tube

 X/X 	$C_0 = 4.4 \times 10^{-4}$	per	straw	tube
-------------------------	----------------------------	-----	-------	------

Element	Material	X [mm]	X ₀ [cm]	X/X ₀
Film Tube	Mylar, 27µm	0.085	28.7	3.0×10^{-4}
Coating	Al, $2 \times 0.03 \mu m$	2×10^{-4}	8.9	2.2×10^{-6}
Gas (2bar)	Ar/CO ₂ (20%)	7.85	5966	1.3×10^{-4}
Wire	W/Re, 20µm	3×10^{-5}	0.35	8.6×10^{-6}
			Σ_{Straw}	4.4×10^{-4}

STT Layout

- 4636 Straw tubes in 2 semi-barrels
- 23-27 planar layers in 6 hexagonal sectors
 - 15-19 axial layers (green)
 - 4 stereo double-layers for 3D reconstr.,
 with ±2.89° skew angle (blue / red)
- Time readout (isochrone radius)
- Amplitude readout (energy loss)
- $\sigma_{r\Phi} \sim 150 \mu m$, $\sigma_z \sim 3.0 mm$ (single hit)
- $\sigma_E/E < 10\%$ for π/K identification
- σ_p/p ~ 1 2% at B=2 Tesla
- $X/X_0 \sim 1.2\%$ ($^2/_3$ tube wall + $^1/_3$ gas)
- R_{in}/R_{out} : 150 / 418 mm
- Length: 1500mm + 150mm (RO upstream)

Self-Supporting Straw Layers

Novel technique (from COSY-STT):

- Straw tubes are assembled under overpressure (Δp=1bar)
- Pressurized straws are close-packed (~20µm gap) in planar multi-layers and glued together (dot glueing)
- Strong rigidity: multi-layer straw module is self-supporting
- No stretching of straw ends from mechanical frame needed
- Perfect and strong cylindrical tube shape by overpressure
- No reinforcement structures along the length needed
- Lowest weight, precise geometry, maximal straw density

Self-Supporting Straw Layers ..

Pressurized, close-packed straw layers show strong rigidity, here demonstrated by 3kg Pb-brick

Axial and Stereo Layer Modules

- Axial quad-layer module:
 - 4 close-packed axial layers, glued together (glue dots)
 - Increased rigidity compared to double-layer
 - Even number of straws and gas lines per module
 - Replacement of inner faulty single straws possible
- Stereo quad-layer module:
 - 2 Skewed double-layers (+2.89° / -2.89°)
 - Shorter tubes at corners, connected to next skew. dlayer

Connection scheme of skewed d-layers:

+2.89° -2.89° view from top

Axial and stereo straw layer modules

STT Assembly

Assembly method:

- Integrated quad-layer modules with gas manifolds and electric coupling
- Assembly complete hexagon sector on the table
- Insert sector into STT frame structure
- Plug on gas and electric connectors

Note: no tube stretching from mechanical frame needed

Mechanical Frame

- Design and construction by INFN Frascati (D. Orecchini)
- Material: aluminum (ρ=2.7g/cm³, Young's modulus: 70 Gpa)
- Radiation length X_o= 8.9 cm
- Thermal expansion: 24 ppm/°C
- FEM analysis: 0.03mm max. deflection
- Mechanical frame weight: 2× 8.2kg
- 11.6 kg Straw tubes (4636× 2.5g) with
 - strong wire stretching (230kg equiv.)
 - strong tube stretching (3.6t equiv.)

Central Tracker Mechanics

- "CENTRAL SUPPORT FRAME" prototype by INFN Turin wshop
- "STRAW SUPPORT FRAME" prototype by INFN Frascati
- "AUXILIARY INSERTION STRUCTURE" by INFN Frascati
- "VERTEX" mechanical prototype: under development
- "CROSS-PIPE" prototype: planned in the next months

Final Assembly Scheme

Gas Mixture

- Ar/CO₂ is best gas mixture for high-rate hadronic environments
 - Highly tolerant to highest irradiation, no polymeric reactions
 - But: limited quenching capabilities of CO₂
 - CO₂ fraction 10-20%
 - Gas pressure p = 2 bar
 - Gas gain: A~5×10⁴ (limited streamer threshold)
- Ionization numbers
 - Mips: 200 I.P./cm, dE ~ 5 keV/cm (@2bar)
 - Range: ~ 20-2000 I.P.
- Signal charge: ~ 1×10⁶- 1×10⁸ e⁻¹
- B=2T magn. field: spiral drift paths
- Max. electron drift times: 200-250ns

PANDA-STT Test Systems

Prototype systems:

- Full-scale system for developing assembly method of self-supporting modules in frame structure
 - Frontend readout and HV-/gas supply
- 2x Small-scale setups: RO developments, beam tests
 - 128 Straws in 8 layers, 1500mm length, ∅=10mm
 - 400 Straws, 3D-reconstr., 8 axial + 8 stereo layers

STT detector in COSY-TOF experiment:

- "Global" test system for PANDA-STT
 - Same straw design & materials
 - Geometry of planar self-supporting double-layers
 - Similar calibration: straw positions & isochrones
 - Test of mechanical precision and spatial resolution
- Installed and 1st experiment beam time in 2010

Testsystem: STT at COSY-TOF

2704 straw tubes

- Al-mylar: d=32µm, Ø=10mm, L=1050mm
- 13 planar double-layers
- Skewed by i×60° for 3D reconstruction
- Ar/CO₂ (20%) at p=1.2bar
- Time readout: Discr. + TDC
- Operation in vacuum

Readout scheme

- Transimpedance preamps in vacuum (~3mW/ch)
- Thin coax signal lines, \emptyset =0.5mm, 50 Ω
- 6-9V Preamp power supply on signal line
- Feed-through flange (3000×signals, 60×gas, 200×HV)
- Discr. (ASD8B) + TDC (GPX)

Spatial Resolution at COSY-STT

- Isochrone calibration r(t) by integration of drift time spectrum
 - Global parametrization by 4th order polynomial
- Track reconstruction by χ^2 fit to isochrones
 - Single δ-electrons filtered out
 - No correction of σ_{MS} , $\sigma_{\Delta t/L}$, σ_{tof} , ...
- Spatial resolution by residual distribution
 - $\sigma_{r\phi} = 138 \mu m$ (190 –100 μm over r_{straw})
- Estimated time resolution: σ_t~1ns

Readout Mechanical Design

Backward EMC limits space for readout, two options

- Complete readout at frontend
 - Space limitation: ∆L~15cm, A<4000 cm²
 - Cooling system needed?
 - Glassfibers out
- Reduced FEE boards frontend
 - Electric straw signal coupling, HV supply, + (transimp.)preamps?
 - Signal out by coax cables
 - Readout crates close to magnet, ~5-8m cable length needed?
 - No cooling system needed
 - Compact readout space at frontend

Straw Electric Coupling

- Number of straws different for every layer
- Higher straw density in hexagon corner regions
- Connector boards
 - Connect single straws individually by thin wire & contact spring
 - Include HV supply
 - Common ground pins = mechanical board support

16ch line out to digitizers

straw grounding spots on inner side

crimp pin connected by spring

straw signal wire (used at COSY-STT)

4× grounding pins = mech. support

Straw Coupling Boards

- Requirements for digitizers needed
 - Preamp + shaper ?
- Example board (5×8 cm²)
 - HV supply + transimpedance preamplifier
 - 16 ch coax line out to digitizers
 - Still under development, min. ch-ch distance, (capton cable)
- Open for other proposals or design wishes!

Event Simulations

- pp simulation at 6 GeV/c beam momentum (DPM generator)
- STT geometry + frame material, MVD not with final material budget
- Derive straw hit distributions
- Mean multiplicity of ~ 4 tracks per event seen
- Low energy protons from elastic scattering at θ ~ 90°

Expected Particle Rates

- Distribution of hit number per straw length unit (cm⁻¹)
- All numbers for innermost STT layer and 1500mm length
- Event rate of 2×10⁷ evts/ sec
- Particle rates
 - ~ 5-8 kHz/ cm in forward region
 - ~ 14 kHz/ cm at z= 2±1 cm
 - ~ 800 kHz/ straw
- Energy losses dE per cm
 - Min. from mips: ~5 keV/cm
 - Mean: ~ 10 keV/cm (2×mips)
 - Max: ~ 45 keV/cm (9×mips)
 from low energy protons at 90°

Readout Developments

Two Methods for energy readout:

- Direct ΣQ measurement by integration of charge signal (FADC, MSGCROC)
- Indirect ∆t (Q) measurement by signal width (TOT-Discr. + TDC)

Readout systems:

- Current amplifier + FADC (240MHz)
 - Full signal information, useful for tests, comparisons...
 - 4.2ns sampling: drift time resolution?
- MSGCROC-ASIC
 - Time stamp (T) + amplitude (E)
 - Parameters for MSGC detector, tunable for straws?
- TOT-Discriminator + TDC
 - Prototype with TOT + analog signal out (?)
 - Specific ASIC optimization (preamp+threshold) for straw signals

Readout Parameters

Parameters

- ~ 4600 number of readout channels
- σ_t ~ 1ns drift time resolution
- σ_E/E < 10% energy resolution below 800 MeV/c
- 1×10⁶ 1×10⁸ e⁻ input signal charge (~20-2000 I.P., A~5×10⁴)
- ~ 200-250ns max electron drift times
- ~ 800 kHz particle rates per straw
- ~ 2×10⁹ straw hits per sec. (2×10⁸ evts/sec., 4 tracks, 25 straws)
- (Double-pulse resolution ~50ns helpfull, 500 hits / 250ns in STT)
- No hardware trigger, time stamps and event building
- Limited space and cooling at detector frontend

Summary & Outlook

Current status

- STT design optimised: ~25 hit samplings per (radial) track
- $\sigma_{r\Phi}$ ~ 140µm spatial resolution measured with σ_t ~ 1 ns drift time resolution at COSY-STT with 2700 straws
- σ_E/E ~ 8±1% energy resolution demonstrated for layers of 16 straws and measured with FADC for protons at 640 MeV/c + 2.95 GeV/c

To Do: readout for final PANDA conditions

- Combined drift time + energy measurement and resolution
- Efficiencies + high rates
- Full readout setup
 - many channels, compact, final cable lengths,
 - calibration of many channels, ...
- New 3D-testsystem with 400 straws ready