







#### INTERNATIONAL PHD PROJECTS IN APPLIED NUCLEAR PHYSICS AND INNOVATIVE TECHNOLOGIES

This project is supported by the Foundation for Polish Science - MPD program, co-financed by the European Union within the European Regional Development Fund

## Data Acquisition System for Straw Tube Detector in Cracow

Grzegorz Korcyl

Applied Computer Science PhD Studies IPPT PAN/UJ, Kraków International PhD Studies in Applied Nuclear Physics and Innovative Technologies UJ, Kraków

Kraków, 27 April 2011

#### Plan

- Test setup
- 2. Hardware
  - 1. CARIOCA
  - 2. TRBv2
  - 3. HUBv2
  - 4. CTS
- 3. Measurements
  - 1. Noise
  - 2. Channels and timing
  - 3. Tracks
- 4. Summary



## Test Setup

- Triggering done by scintillator
- NIM modules as discriminator
- Trigger control by CTS
- CARIOCA as Straws Front-End
- Time measurement by HPTDC on TRB
- Trigger rate 145kHz
- Uplink bandwidth 50 MBps
- Reference time, TrbNet, Gigabit Ethernet
- Lightweight unpacker





### Hardware - CARIOCA

#### CARIOCA

- Amplifier, shaper, baseline restorer, discriminator
- LVDS outputs

#### CARIOCA Board 1

- 4x 8 channel CARIOCA
- Manually adjustable thresholds per device

#### CARIOCA Board 2

- 4x 8 channel CARIOCA
- Remote thresholds adjustment per device
- Different input plugs to reduce crosstalk









## Hardware - TRBv2

- 4x HPTDC
  - > 32 channels each
  - Up to 17ps resolution
- 1x Xilinx Virtex4 FPGA
- ▶ 1x ETRAX
- 1x 2Gbps Optical link
- ▶ 1x RJ45
- 1x Addon connector
- 1x Reference time input





#### Hardware – HUBv2

- 2x Lattice ECP2M100 FPGA
- 20x 2Gbps optical links
  - Multiprotocol
  - Current setup:
    - ▶ 1 Gigabit Ethernet
    - ▶ 1 TrbNet Trigger channel
    - ▶ 1 TrbNet Slow Control channel
    - 16 TrbNet General





#### Hardware - CTS

- ▶ 68 x LVDS trigger inputs
- ▶ 51 x LVDS trigger outputs
- ▶ 1 x RJ45 trigger output
- ▶ 1 x TrbNet Trigger output
- 1 x TrbNet general connection
- 1x Lattice SCM trigger logic
- 1x Lattice ECP2M50 optical links control





### Measurements - noise

## Noise and thresholds adjustment - CARIOCA1



Threshold 1000



Threshold 1150



Threshold 1100



Threshold 1200

- CARIOCA devices on borders generate more noise
- CARIOCA board has to shielded
- Long cable between CARIOCA board and TRB has to be shielded
- Common grounding doesn't help



### Measurements - noise

### Noise and threshold adjustment – CARIOCA 2



Threshold 900



Threshold 1050



Threshold 1000



Threshold 1200

- Almost the same behaviour as for CARIOCA1



## Measurements – channels and timing

Risetime: ~10ns

Maximum drift time: 180ns



Leading time for all channels



Hits on channels



Leading time for channel 105

#### Measurements - tracks

- Selection of channels with hits on neighbours
- Low-energetic electrons disperse in gas





T1 and T2 for channel 105



#### Channels with neighbours hits



Common hits on all channels (distance between channels)



## Summary and plans

 Very sensitive setup – a lot of effort on shielding needed

- Correct CARIOCA 2 problems
- Migrate to Marek Idziks' ASIC chip



# Backup



