

Energy calibration for EMC multi-thread

Dong Liu Sep. 25, 2020

Review from CM

Logic

Abbildung 6.1: Schematische Darstellung des iterativen Verfahrens zur Kalibrierung des elektromagnetischen Kalorimeters.

Review from CM

- Run and test the calibration algorithm
 - Calibration samples preparation
 - ROOT file as input, cached in memory
 - Calibrate
 - Update all hits
 - Validation
- Extend to single cluster case
 - Same data format
 - Change calibration goal
- Work to do
 - Optimize the algorithm
 - Test with MC closer to physics events
 - Multi-threads implementation and test
 - Database
 - 2020ParidaRoot

PANDA CM 20/2

Multithreads

- In calibrate
 - Split xtals to n lists
 - Create a thread for each list
 - In each thread
 - Fit $m(\gamma\gamma)$ for xtals in a list

Initialize

Data Buffer

 $\pi 0$ candidates

<cryID, entries>

Calibrate

fit B

m_{yy}A,B

fit ...

m(yy)

A

fit A

ANDA CM 20

- Cache fit results
- Check fit results
- Calculate calib consts

Update

Iteration?

Calib consts

<cryID, value>

Yes

No

Finalize

Multithreads

Multithreads

- Test
 - Single thread
 - Iterations: 7
 - Time: ~3h30min
 - 8 threads
 - Iterations: 7
 - Time: ~41min (5.9min/iteration)
 - Same result as single thread case
 - Improvement
 - Reduce 80% consuming time (1/5)

update

- In update
 - Split xtals to n lists

- 8 threads
 - Iterations: 11

10 threads
Iterations: 8

- Time: 29min (3.6min/iterat

 $m(\pi^0)$ corrected

0.12

 $m(\gamma\gamma)$ (GeV/c²)

0.14

 $m(\pi^0)$ corrected

 $m(\pi^0)$ raw

 $m(\pi^0)$ raw

--- TLine

0.16

0.18

<u>×10</u>³

200

100

0.08

Events

PANDA CM 20/2

σ_{raw} = 0.067

 σ_{crw} = 0.038

σ_{ini} **= 0.040**

 $m_{raw} = 0.13465$

m_{crw} = 0.13489

m_{ini} = 0.13558

0.1

Mπ Relation with Eγ

Summary

- Optimization of the code
 - Code reorganization
- Multi-threads
 - Implemented with <thread>
 - Test with MC, save much time, with same quality
 - Energy and angle related calibration constants
- Plan

Energy and angle relation of the calibration constants

PANDA CM 20/2

n x n