Energy calibration for EMC multi－thread

Dong Liu
Sep．25， 2020

Review from CM

－Logic

Abbildung 6．1：Schematische Darstellung des iterativen Verfahrens zur Kalibrierung des elek－ tromagnetischen Kalorimeters．

Review from CM

- Run and test the calibration algorithm
- Calibration samples preparation
- ROOT file as input, cached in memory
- Calibrate
- Update all hits
- Validation
- Extend to single cluster case
- Same data format
- Change calibration goal
- Work to do
- Optimize the algorithm

- Test with MC closer to physics events
- Multi-threads implementation and test
- Database

Multithreads

－In calibrate

－Split xtals to n lists
－Create a thread for each list
－In each thread
－Fit $m(\gamma \gamma)$ for xtals in a list
－Cache fit results
－Check fit results
－Calculate calib consts

Multithreads

Iniversitv of Science and Technolnov of China
／／assign xtal to threads

```
mapThreadXtals.clear();
int nxtal = xtal_index.size();
while (ixtal<nxtal) {
Create n lists
T／create multıthreads
thread th［100］；／／no more than 100 thread
for（int \(i=0\) ；i＜nthreads；i＋＋）\｛ WOrk in \(n\) threads
th［i］＝thread（getCinThread，i）；
\}
／／wait for all threads
for（int \(i=0 ; i<n t h r e a d s ; i++)\) \｛
th［i］．join（）；
\}
```

- Split xtal
- Create a
- In each t
－Fit m（ γ
－Cache
－Check fit
－Calculat ϵ
／／check single thread to analysis the result for（int i＝0；i＜nthreads；i＋＋）\｛
cout＜＜＂Info：size of calibMap＂＜＜mapThreadErgebnis［i］．size（）＜＜endl；
81 行：for（int icry＝0；icry＜mapThreadXtals［i］．size（）；icry＋＋）

Multithreads

- Test
- Single thread
- Iterations: 7
- Time: ~3h30min
- 8 threads
- Iterations: 7

- Time: ~41min (5.9min/iteration)
- Same result as single thread case
- Improvement
- Reduce 80% consuming time $(1 / 5)$

update

- In update
- Split xtals to n lists
- 8 threads
- Iterations: 11
- Time: 47min (4.3min/iteral
- 10 threads
- Iterations: 8
- Time: 29min (3.6min/iteral

University of Science and Technology of China

${ }_{0.01}^{0.015}$ E \quad EEg changes with irow

Relation with Ey

$\delta E \gamma$ changes with Ey

$\mathrm{M} \pi$ Relation with $\mathrm{E} \gamma$

Summary

－Optimization of the code
－Code reorganization
－Multi－threads
－Implemented with＜thread＞
－Test with MC，save much time，with same quality
－Energy and angle related calibration constants
－Plan
케＇Energy and angle relation of the calibration constants

