BWEC EMC digitization in PandaRoot

Guang Zhao (*zhaog@ihep.ac.cn*), Oliver Noll Combined EMC Hardware/Software Meeting Jan 17th, 2020

Outline

Introduction

Digitization implementation

New from the last CM: Optimized noise model, duo-APD output, checks/bug fixing

Code development in PandaRoot

Introduction: BWEC readout

Introduction: Digitization process in PandaRoot

Signal Generator: Pulses

$$f(x) = -A \cdot e^{\frac{-N(x-\delta)}{\tau}} \cdot \left(\frac{x-\delta}{\tau}\right)^N$$
(2.1)

Whereby τ is describing the decay behavior. N has an impact on the rising and decay ratio. δ shifts the pulse in time. A is proportional to the pulse hight H:

$$A = H \cdot e^N \tag{2.2}$$

Waveform of a 0.5 GeV photon

- APD gain = 200
- APFEL amplifier: 2 gains
 - HG/LG = 10.5
- Full pulse width: ~1700 ns
- Rising time: ~300 ns
- APFEL ASIC pulse digitized by the SADC

Signal Generator: Noises

Noise components

- Biased APD, APFEL preamplifier at low/high gain
- Open ADC entrance
- Front-end electronics transmission
- <u>Noise measurement</u>
 - FTT analysis of the noises
- Noise simulation
 - iFFT of the power spectrum to obtain time-domain noises

Signal Generator: Noise (II)

Biased APD, APFEL preamplifier for low/high gain (correlated)

ADC & FE Transmission

✓ Good agreement between simulation and measurement

An approximated noise model

Noise modeling

- ✓ Pre-generate a big noise buffer
- Pick up the noise of a waveform from a random position in the buffer.
- Pros: Much faster

Cons: Loose some randomness

# of waveforms	CPU Time (sec)			
	Full iFFT	Reduced iFFT		
100	1.218	1.106		
200	1.405	1.079		
500	2.413	1.047		
1000	4.147	1.105		
5000	18.096	1.193		

Noise comparisons

From Oliver

w/ full iFFT

No obvious discrepancies on mean/rms distributions for the reduced iFFT

w/ reduced iFFT

Noise rate/hit efficiency check (single APD)

Noise rate = # of noises / sec [Hz]

- Full iFFT: 160.5 +/- 1.3 kHz (HG), 332.4 +/- 2.6 kHz (LG)
- Reduced iFFT: 166.0 +/- 1.3 kHz (HG), 332.9 +/- 2.6 kHz (LG)

Similar noise rates and hit efficiencies for the reduced iFFT

Feature Extraction

FIR: 20-coefficient filtering

Derivative (D) - D[i] = T[i + r] - T[i]

Second derivative (D')

- D'[i] = D[i + r] - D[i]

time: zero transit of D'

TMAX

- TMAX[i] = $\Sigma_i(D[i]) \Theta[-D[i]] * D[i] \longrightarrow$ amplitude: TMAX peak
- where $\Theta(x) =$
 - 0 (x < 0)
 - 1 (otherwise)
- Hit detection
 - Threshold: A weight function convoluted with the TMAX (1.35 MeV)

Noise rate/hit efficiency check (duo APD)

- Single APD: 166.0 +/- 1.3 kHz (HG), 332.9 +/- 2.6 kHz (LG)
- Duo APD: 22.1 +/- 0.2 kHz (HG), 84.4 +/- 0.7 kHz (LG)

Time-based simulation

Signal generator

Set a time window ([t_{start}, t_{active}]) to each waveform. Pile-up waveforms are generated when any time-overlapping is observed in a single crystal

Feature extraction

The TMAX filter is capable of separating pile-up waveforms

Sorting digis

Digis are sorted according to the time stamps

Reconstruction

Clustering using digis in a time gap

Pile-up waveforms

(red line: input time/amplitude, blue line: extracted time/amplitude)
✓ We are able to produce the pile-up waveforms, and are able to separate them
✓ The amplitude of the secondary waveforms need to be corrected, because the amplitude of the rising edge does not start from 0

Digi sorting

✓ Digis are sorted according to the time stamps as expected

Reconstructed photon energy (GeV)

✓ Single photon (box generator)

- ✓ Energy: 0.5 GeV
- ✓ Theta: 155 deg / Phi: 0-360 deg
- ✓ Event mean time: 500 ns
- ✓ Time gap in clustering: 20 ns
- Time-based simulation gives larger energy resolution, and smaller energy
- Need to correct the secondary pile-up energy, and to check the time-based clustering algorithm

Code development in PandaRoot

A standalone package for the bwec

- Implementation of "signal generator"/"feature extraction" features mentioned in this talk
- Support time-based simulation
- Signal generator code is based on fwec code by Philipp Mahlberg

Design

- Separation of tasks and algorithms → Flexibility
- Use common interfaces for the algorithm classes → Scalability

Code structure

- Two tasks for signal generator and feature extraction respectively
- Simulator and Pulse Shape Analyzer (PSA) as the "algorithms"
- The algorithms inherit from the "interfaces"

Performance test

of Simulated Events

21

Code in git repository

https://git.panda.gsi.de/zhaog/PandaRoot/tree/emc_digi_bwec

uang Zhao > ᡝ PandaRoot > Repository					
emc_digi_bwec 🗸 PandaRoot	/ + •	History	Q Find file	Web IDE	* 、
implemention of 2-apd data Guang Zhao authored 1 wee	processing method k ago		\odot	fb806cfc	G
Name	Last commit			Last	update
PndMCMatchNewLinks	Remove Warnings & Adjust FairLogger usage	1 year ago			
analysis	Missing #include <array> added</array>	11 months ago			
Config	bugfix/pndsim tree			1 y	ear ag
detectors	implemention of 2-apd data processing method			1 w	eek ag
eventdisplay	Updated stt geometry			1 y	ear ag
external	Always compile the old version of Vc.			5 mon	ths ag
astsim	fixing some paths for fsim & QA			1 y	ear ag
🖿 field	Remove Warnings & Adjust FairLogger usage			1 y	ear ag
g config	Fixing test fails when running with new root			2 ye	ars ag
🖿 genfit	Some include/lib dirs added by Radek			2 уе	ars ag
g enfit2	genfit2 patch for includes / for upcominf FairRoot vers	io		2 уе	ars ag
genfit2-remote	Made a hard-copy of genfit2, moved remote genfit2 to	o		2 ye	ars ag

 Almost ready to check in to the pandaroot main repository

Summary

Digitization implementation

- Signal generator: provide digitized waveforms with realistic noises
- Feature extraction: extract digi information from the waveforms using the TMAX filter
- Duo APD signal processing to suppress noises
- Capable of the time-based simulation

Code development in PandaRoot

- A new package for the bwec digitization
- OO design
 - Task/algorithm separation: Easy to migrate to the new framework
 - Algorithms w/ well defined interfaces: Easy to scale to other sub-detectors
- Performance test: acceptable speed and memory use
- To check in very soon