Concepts for Pre-Assembly Data Acquisition for the PANDA Experiment

Milan Wagner

What We want to Achieve?

- Full pre-assembly data acquisition
 - Similar hardware to PANDA DAQ
 - Full functionality
 - Online event reconstruction
 - Online event building
 - Software triggering

Three Steps Concept

Step 1 small start version Step 3 pre-assembly DAQ

time

Step 2 extended version

02.04.2014

First Step

- Small but scalable start version
- Parts of the functionalities
- Similar hardware

Prototype Trigger-less Data Acquisition (PTDAQ)

Used for testing:

- Synchronization of data acquisition (SODANET)
- Sub detector prototypes
- Reconstruction algorithms
 - Yutie Liang
 - FPGA Helix Tracking Algorithm for PANDA
- Current hardware

Differences to the $\overline{P}ANDA DAQ$:

- No connection between sub-event building boards via backplane
- Smaller interaction / data rate

PTDAQ Concept

Functionality:

- Digitalized data front end electronic synchronized at data concentrator
- Sub-event building and first filter algorithm
- Event reconstruction and second stage of filter algorithm

Data concentrator (DC) Front end electronic (FEE)

PTDAQ Setup

xTCA compliant board:

- AMC form factor
- Xilinx Virtex 5FX70T-2
- 2 x 2 GB DDR2
- 4 SFP+ interfaces
 - 6.25 Gbit optical
- 1 Gb Ethernet

- Micro TCA shelf:
 - Up to 4 x xTCA compliant boards
 - Up to 9 x data concentrators

PTDAQ Time Line

PTDAQ Test System

Three Steps Concept

Step 1 Small start Version Step 3 Pre-assambly DAQ

time

Step 2 Extended version

Second Step

- MicroTCA shelf \rightarrow Compute Node
- Include connection between sub-event building boards
 - \rightarrow Increasing the number of data concentrators
 - \rightarrow Include the data transport mechanism

(Sören Fleischer)

Compute Node (CN)

Compute Node prototype

Compute Node rev. 3:

- ATCA based carrier board
- Xilinx Virtex 4FX60
- Carries up to 4 AMC cards
- Supplies direct high speed interconnection between all 4 AMCs
- Connects all 4 AMC cards via a switch FPGA to the ATCA backplane

Extended Trigger-less Data Acquisition

- VHDL code can be used without many changes
- Increased number of inputs per sub-detector
- Increase the possible data rate
- High performance event reconstruction
- High level event filtering
 - Software trigger on a sever farm or GPUs

Extended Trigger-less DAQ Setup

- ATCA shelf
- 1 or 2 Compute Nodes (start version)
- 4 to 8 xTCA compliant boards
- Server farm
 - Mass storage
 - Software trigger

Three Steps Concept

Step 1 Small start Version Step 3 Pre-assembly DAQ

time

Step 2 Extended Version

02.04.2014

Status and Outlook

Status:

- One board setup
 - Connection of up to 4 DCs
 - Tested with simulated DCs

Outlook

- Tests with different kinds of DCs
- Different test with different kinds of detectors
- Upgrade to CN based DAQ

Thanks for your attention

SODANET Data Format

Synchronization of Data Acquisition (SODANET)

Functionality:

- Distribution of clock
 - Time stamp
- Distribution of synchronization commands
 - Start, stop, calibration
- Signal distributed over optical fiber
- Measurement of a signal propagation time
- Distribution of detector configuration data
- Slow control

SODANET link:

- Bidirectional
 - Source \rightarrow data concentrator:
 - Synchronization
 - Front end electronic configuration
 - Data concentrator \rightarrow source:
 - Slow control, used for time calibration

Data concentrator (DC) Front end electronic (FEE)