XLVII PANDA Collaboration Meeting

This work was supported in part by BMBF (06G19107I), HGS-HIRe for FAIR and the LOEWE-Zentrum HICforFAIR.

Helmholtz International Center

Bundesministerium für Bildung und Forschung

Outline

- test of the new CN
- change from UDP to Aurora
- status of the event builder
- TRBnet data generator current and future

Test of the new CN

- 8 new CN arrived at Gießen
 - 5 for Belle II
 - 3 for Panda + 2 obtain back from Belle II

Test of the new CN

• tested following parts (mostly done by Björn Spruck)

	1	2	3	4	5	6	7	8
Seriell	\checkmark							
RAM1	\checkmark	Х	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
RAM2	\sim	Х	\sim	\checkmark	\checkmark	\checkmark	\sim	\sim
PPC	\checkmark							
FLASH	\checkmark	\checkmark	\checkmark	Х	Х	\checkmark	\checkmark	\checkmark
PROM	\checkmark							
OPT 1 (3.125 Gb/s)	-	-	-	-	-	-	\sim	\checkmark
OPT 2 (3.125 Gb/s)	\checkmark							
OPT 3 (3.125 Gb/s)	-	-	-	-	-	-	\checkmark	\checkmark
OPT 4 (3.125 Gb/s)	\checkmark							
Ethernet	\checkmark	\checkmark	\checkmark	\checkmark	\sim	\checkmark	\checkmark	\checkmark
Backplane (3.125Gb/s)	\checkmark							
Linux (on PPC)	\checkmark							

Test of the new CN

x-rayed the defect boards:

Short a the connection of flash of board #4

Short a the connection of flash of board #5

Short a the connection of RAM of board #2

try to fix them in Gießen If not possible, we have to send them back to IHEP

Short Reminder

μΤϹΑ

- I xFP v3
 - 4 Inputs 3.125Gb/s
 - 1 Output Gb-Ethernet

MicroTCA.0 System, Cube(Schroff) Including one xFP and 1 MCH

Kontron AM4901 MCH

Change from UDP to Aurora

- change from UPD \rightarrow Aurora
 - Because of the Ethernet MAC
- not needed by using Aurora
 - Easier for the CN
 - Problem: not easy to implement on TRB3
- change back to UDP
 - Grzegorz Korcyl managed yesterday

Ethernet MACSEP

Schematic of the xFPv3

Status

- Tested burst builder:
 - Simulation using ISIM
 - Test bench 2 inputs
 - Ok
 - Test bench 4 inputs
 - Loose sometimes last word
 - Due to a wrong assignment of the LL-interface
 - TRBnet data generator 2 inputs
 - Ok
 - •
 - On hardware:
 - 2 inputs UDP
 - OK
 - 2 inputs TCP/IP
 - 3 times the data
 - work in progress

TRBnet data generator current and future

- TRBnet data generator: currently
 - x inputs
 - random data
 - sbn = counter
 - the probability which of the input is used or if more are used, is equally distributed
 - generates the input files and the output files for comparison

TRBnet data generator current and future

- TRBnet data generator: future (Bachelor theses Christopher Hahn)
 - using Panda-root

Thanks for your attention