
Concept for the Interface between the
PANDA Detector Control System and

the Front-End Electronics

Tobias Triffterer,
Institut für Experimentalphysik I,

Ruhr-Universität Bochum
Git revision: cc13a0e7a7d353275c26e6877a42891c8272a4e5

Revision date: 2019-03-01 11:56:18 +0100
Git branch: master

1 Introduction

The operation of the PANDA detector requires the close cooperation of several common systems,
among them the Detector Control System (DCS), the Front-End Electronics (FEE), and the
Data Acquisition (DAQ). This concept describes the interfaces between these systems and their
shared data structures.
The basic idea contains the following two principles:

1. The DCS gives a command via a dedicated EPICS server (called Input/Output Con-
troller or IOC in the context of EPICS) that instructs DAQ and FEE to load a certain
configuration that is identified by a unique identifier which can be an integer, a hash, a
GUID, or something equally suited. After the configuration loading process is complete,
the DAQ and FEE report a status back to the DCS, but the DCS is not involved in the
data transfers necessary on SODAnet and similar infrastructures to execute the loading
of the configuration values.

2. The DCS provides a central configuration database where DCS-related values like voltages
or temperature setpoints are stored together with DAQ/FEE-related values like ADC

Revision: cc13a0e 1 Comitted: 2019-03-01



pedestals. The DCS provides an API which any DAQ or FEE application can use to
query data from this database. The configuration database will as well be used by analysis
clients to retrieve the status of the PANDA detector as it was at the point in time when
the data currently under analysis was taken.

The aforementioned unique identifier is intended to be used by the various applications in-
volved in this process to unambiguously identify a configuration dataset as defined in section
4. These datasets will also get human-readable names, so that the users (except eventually the
database administrators) do not have to deal with the unique identifier themselves.

2 Configuration Namespaces

The groups responsible for a PANDA sub-detector are also responsible for maintaining the
configuration of this sub-detector in the central configuration database. The reason for this
responsibility assignment is that the knowledge of the experts for said sub-detector is required
to maintain its configuration properly.
To make sure that no conflicts with e. g. parameter names occur, the configuration data will

be split into namespaces with each sub-detector having its own namespace. Names given to
parameters (see section 4) only have to be unique within one namespace, but not within all of
PANDA.
Each sub-detector will also get its own list of configuration datasets and the experts of each

sub-detector can freely decide which condfiguration dataset shall be used for which run and
operation mode (see section 4).
This means that the DCS will issue one “load configuration” command per sub-detector (that

take part in the run), this requires one EPICS record for such commands per sub-detector.
These records may all be hosted by a single dedicated EPICS server (called Input/Output
Controller or IOC in the context of EPICS) or reside on different IOCs, eventually one per
sub-detector. Due to the distributed nature of EPICS, this does not make any difference from
the perspective of the operator in the control room.

3 Initiating Configuration Loading

The EPICS record that is used to initiate the configuration loading process will be equipped
with a custom device support. Upon a write access on this record, the device support code
takes the necessary steps to instruct DAQ and FEE to start the configuration loading process.
The value written to the value field (“VAL”) of the record is the unique identifier (see section
1) of the configuration dataset to be loaded for the specific subsystem.
The method of communication used between the device support code and the DAQ/FEE

code still has to be defined and needs input from the DAQ and FEE experts. The following
methods are possible:

Revision: cc13a0e 2 Comitted: 2019-03-01



Configuration Database
Active Config Datasets

Key-value store

Detector Control System

2. Query active dataset

Subsystem DCS-FEE Interface
DCS EPICS IOC

DAQ/FEE daemon/library

3. Command: Load dataset x

5. Query parameters for dataset x

4. Forward command to
load dataset x

Run Control

1. Command: "Start Run"

Figure 1: Visual representation of the steps required to load the DAQ/FEE parameters accord-
ing to this concept. (The feedback from the DAQ/FEE to the DCS has been omitted
to keep the graph clear.)

• Method A: The DAQ/FEE group provides a shared library that the device support can
use. This library handles all internals of the DAQ/FEE system.

• Method B: The DAQ/FEE groups create a DAQ control daemon that is running on the
same PC or another one. The device support communicates with this daemon via network
(if it is on a different PC) or via inter-process communication like D-Bus, Sockets, etc. (if
it is on the same PC).

The EPICS device support code itself will be written by the DCS group, the library or daemon
will be provided by DAQ/FEE experts. The Application Programming Interface (API) between
these components has to defined and agreed upon by both DCS and DAQ/FEE developers, but
this can happen at a later date.
The device support code will forward the configuration dataset unique identifier to the

DAQ/FEE code. The DAQ/FEE code then has to use this identifier to query the required
parameters from the central configuration database (see section 4). EPICS and the rest of the

Revision: cc13a0e 3 Comitted: 2019-03-01



DCS are not involved in the steps necessary to program the front-ends appropriately. This
sequence is shown as a block diagram in figure 1.
After this programming process is finished, the DAQ/FEE code has to report back to the

DCS with a status. This status can be either “Successful” or it can be an error code. There
should be a list of defined error codes for this interface, but this list can be compiled while the
actual programming work is done.
In addition, the EPICS device support controlling the configuration loading process will also

trigger DCS-internal processes to load configuration parameters for which the DCS is responsible
like voltage or temperature settings. To accomplish this, the DCS code for each sub-detector
will also make requests to the central configuration database (see section 4). This process is not
explained further in this document as it focuses on the interface between DCS and DAQ/FEE.
The DCS-internal processes will also report a status back to the configuration device support.
If there is an error reported (from DAQ/FEE or DCS), the device support code will set an

error status on the record, this will cause an alarm in the control room. The run control software
can query this alarm status and will only proceed with the start of data taking if all PANDA
sub-detectors report their initialization as “successful”.
If there is no response regarding the status after a certain amount of time, the DCS will

assume that there is a problem and report a timeout error to the run control, this means that
the process of starting a run will be aborted. The maximum time to finish the initialization
process has to be agreed upon by the involved PANDA groups. In case of long initialization
processes, one may implement a “still running” status message, so that the DCS can see that
the processes on the DAQ/FEE side did not crash.
During a run, the DAQ/FEE applications should keep a copy of all the configuration pa-

rameters for that run in memory, in some cases the data may also be stored in the memory
of dedicated hardware like a data concentrator or compute node. If a front-end device needs
a reset and/or reprogramming during a run, the data is available immediately without having
to make any requests to the DCS or the central configuration database. This ensures that the
downtime of that particular front-end device is kept as short as possible.
Nevertheless, the information that reprogramming was necessary should be recorded – on

the one hand to explain artifacts of a partial detector downtime during analysis, on the other
hand to see how frequently such reprogrammings are necessary. The implementation of this
recording should be discussed. It may be part of the (meta) data recorded during the run or
the frontend device may notify the DCS so that this enters the DCS archive database. A third
option would be to have a dedicated API for reporting such issues and a dedicated section in
the central database to keep these recordings.

4 Configuration Database

The configuration database is the central storage location for any information needed to config-
ure the parts of the PANDA detector to make it ready for data-taking. It has two main usage
scenarios:

Revision: cc13a0e 4 Comitted: 2019-03-01



1. The DCS, the DAQ, and the run control use it in the process of starting a run to configure
the PANDA detector for a given operation mode. After starting a run, the software records
the configuration used in the database.

2. The analysis clients use the database to learn which configuration parameters were used
during the run they are currently analyzing, so they can act accordingly and e. g. ignore
anomalies due to a disabled readout channel.

The configuration data itself will be organized in the form of a key-value store. As explained
in section 2, each PANDA subsystem gets its own namespace and therefore every detector
group can freely assign its key names without having to worry about possibly breaking the
configuration of another system. For the content of the key-value store, a list of data types like
integer, double and string will be available. Further data types may be added upon request
from any PANDA group if the basic data types are not sufficient for them.
A defined collection of key-value pairs shall be known as a configuration dataset. A

configuration dataset also exists in the namespace of its PANDA subsystem, so the PANDA
groups can create datasets as they like without harming any others. A configuration dataset
must be complete in the sense that it contains all the information required to make the subsystem
it belongs to ready for data-taking. Each configuration dataset will be assigned an unique
identifier (integer, hash, GUID, etc.) by the database management system or the DCS database
operation software.
In addition to the unique identifier, each dataset shall be given a human-readable name.

Alongside with its creation date and possibly other data, this name will be used when a user
has to select a dataset from a list. The unique identifier is used internally by the database system
and the DCS and DAQ/FEE applications, but usually not shown to the user. In particular, the
user will not be required to memorize some numbers or hashes to operate the PANDA detector
properly.
To be able to reconstruct the state of the PANDA detector during analysis (both online and

offline), all configuration datasets are by definition read-only. Once a configuration dataset has
been created and stored in the database, nobody may be allowed to change it. If a change is
needed, it has to happen in a way that the modified version is added as a new configuration
dataset and gets a new unique identifier.
Configuration datasets can then be assigned to an operation mode. Operation modes are

global, i. e. they are not bound to subsystem namespace but they are the same for everyone.
The operation mode describes types of data-taking runs. There can be test runs and physics
runs and maybe more. For the physcis runs, it would be smart to differentiate by beam energy
range. If we run at e. g. 5GeV/c, there will not be a 12GeV photon so one can increase the
gain of the front-end electronics to use the dynamic range of the ADCs properly and thus get
a better resolution.
In addition, it is worth to consider having operation modes like “HESR down for time x”. If

the accelerator is not working, we cannot do physics. But we may use the time in a somewhat
meaningful manner by doing some automated maintenance tasks. The EMC for example could

Revision: cc13a0e 5 Comitted: 2019-03-01



Operation Mode: Physics @ 5 GeV
Subsystem 1 Subsystem 2 Subsystem 3

Configuration Database
Subsystem 1 Config 7yFYmu
Subsystem 1 Config WV14SG
Subsystem 1 Config V8upVO
Subsystem 1 Config OzlhB4
Subsystem 2 Config 6gmwRc
Subsystem 2 Config OF9NUF
Subsystem 2 Config DbLw0M
Subsystem 3 Config 1UC3AF
Subsystem 3 Config O1UkNs

Operation Mode: Physics @ 15 GeV
Subsystem 1 Subsystem 2 Subsystem 3

Figure 2: Block diagram showing the assignment of configuration datasets to operation modes.

take LED pulser runs to check the crystals for radiation damage. If there is a long downtime,
one may also consider to activate the annealing LEDs to heal some radiation damage in the
EMC scintillator crystals.
Each detector group can assign one of its configuration datasets to each operation mode and

they can use the same dataset on different operation modes if they so like. Also, they can
change this assignment at any point in time. An example for two operation modes and three
subsystems in shown in figure 2.
When a run is about to be started, the DCS software checks the operation mode of the run

that shall begin. It will then query the database to see which configuration dataset is assigned
to this operation mode at that very point in time for each subsystem. After this, the DCS will
instruct the DAQ and FEE software of each subsystem via the procedure outlined in section 3
to load that specific configuration dataset by specifying its unique identifier. In addition, the
DCS itself will take care that DCS-related values like voltages are set accordingly.
The DAQ and FEE software can then use the dataset unique identifier to query the individual

parameter it needs from the key-value store in the configuration database and program the
devices according to this parameters.
The DCS (or the run control) software makes an entry into the run database (which may

Revision: cc13a0e 6 Comitted: 2019-03-01



be a part of the configuration database) and specifies which configuration dataset was used for
each subsystem for this run. The run will here be identified by the run number or any other
unique property. This information is also by definition read-only once it has been entered into
the database.
During analysis, the user can query the list of configuration datasets used via the run number

and then query any needed configuration parameter based on the unique identifiers of the
configuration datasets. As the datasets are read-only, the information is guaranteed to be the
same as it was during taking the run and writing the data to disk.

5 Monitoring the Front-End Electronics

Another task where communication between the DCS and the FEE is required, is the monitoring
of the FEE. As this is a different task, it will get its own device support and can be run on a
different IOC. An additional difference between the configuration loading and the monitoring
is that the latter is required all the time during a run period of PANDA and not just at the
start of a run, so these two tasks should be kept separate.
Monitoring the FEE means to keep track of their operation parameters like voltages, currents,

and temperatures as well as learning about errors in the FEE and reporting them using the
normal alarm handling chain of the DCS.
Currently, there are two options to set up the error monitoring of the FEE:

1. A custom device support uses an interface to SODAnet to query specific registers from
the FEE. These registers contain the status of the FEE module (e. g. an ADC), so an
error can be detected there.

2. The firmware of the FEE modules is extended to actively send out an error message if an
error occurs. A custom device support receives these error messages and acts accordingly.

The responsibility distribution in both cases would be as follows: The custom EPICS device
support is programmed by the DCS group, the SODAnet interface and FEE register description
is provided by the DAQ/FEE groups.
From the DCS point of view, both alternatives are equally suitable, so this decision is left to

the DAQ/FEE experts.
Monitoring other parameters like the supply voltage of the ADCs or their temperature, is a

standard task of DCS. All that is needed here is a communication bus to ask the FEE for this
information. This communication bus may be SODAnet (if this information fits in and does
not interfere with the readout of the ADCs). Another alternative would be to use a dedicated
bus like a serial line (RS-232) or ethernet.
The responsibility distribution would again follow the known schema: The DAQ/FEE experts

provide a way to retrieve the information from the FEE and the DCS team will create the EPICS
device support to do this.

Revision: cc13a0e 7 Comitted: 2019-03-01


	Introduction
	Configuration Namespaces
	Initiating Configuration Loading
	Configuration Database
	Monitoring the Front-End Electronics

