		EPICS Applications	First Experiences using EPICS	Conlusion and Outlook
0	000000	000000	0	

Slow Control for EMC Proto192 with EPICS

Florian Feldbauer

Experimentelle Hadronenphysik Ruhr-Universität Bochum

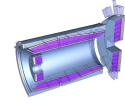
XXXII. PANDA Collaboration Meeting March 9th, 2010

Introduction O	Devices 000000	EPICS Applications	First Experiences using EPICS O	Conlusion and Outlook
Outline				DUR

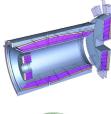
1 Introduction

• PANDA Electromagnetic Calorimeter and Proto192

2 Devices


- Slow Control for Proto192
- I-7565 USB/CAN Converter
- THMP
- Further Devices

3 EPICS Applications


- Overview
- PV Naming
- StreamDevice Module and Asyn
- Channel Archiver
- First Experiences using EPICS
 - Irradiation Tests of Electronics
- 5 Conlusion and Outlook

Introduction		EPICS Applications	First Experiences using EPICS	Conlusion and Outlook
•				
PANDA	Flectrom	agnetic Calc	rimeter and Proto	192

- Electromagnetic calorimeter (EMC) of the $\overline{P}ANDA$ target spectrometer consists of ~ 16000 PWO crystals
- Designed as barrel with 2 endcaps
- Cooled down to -25 °C to increase light yield of PWO by factor 4

- Electromagnetic calorimeter (EMC) of the $\overline{P}ANDA$ target spectrometer consists of ~ 16000 PWO crystals
- Designed as barrel with 2 endcaps
- Cooled down to -25 °C to increase light yield of PWO by factor 4
- Proto192:
 - Prototype of the forward endcap of the EMC consisting of 192 PWO crystals
 - Allows tests of mounting, cooling, read-out electronics and slow control

Introduction O	Devices ••••••	EPICS Applications	First Experiences using EPICS O	Conlusion and Outlo	ook
Slow Cor	ntrol for	Proto192		RU	В

 Monitoring temperature and humidity Temperature and Humidity Monitoring Board for PANDA (THMP) custom hardware with CAN interface

- Monitoring temperature and humidity Temperature and Humidity Monitoring Board for PANDA (THMP) custom hardware with CAN interface
- Controlling LED pulser for monitoring radiation damages and transmission of the PWO crystals custom hardware with CAN interface (not yet implemented)

	Devices ••••••	EPICS Applications	First Experiences using EPICS O	Conlusion and Outlook
Slow C	ontrol for I	^D roto192		DUR

- Monitoring temperature and humidity Temperature and Humidity Monitoring Board for PANDA (THMP) custom hardware with CAN interface
- Controlling LED pulser for monitoring radiation damages and transmission of the PWO crystals custom hardware with CAN interface (not yet implemented)
- Monitoring and setting power supplies
 - Photodetectors: power supply by ISEG with CAN interface
 - LED pulser: ISEG NHQ202M with RS232C interface
- Monitoring e.g. temperature and fan speed of VME crates by Wiener via CAN bus

	Devices	EPICS Applications	First Experiences using EPICS O	Conlusion and Outlook
Slow Co	ontrol for l	Proto192		DUR

- Monitoring temperature and humidity Temperature and Humidity Monitoring Board for PANDA (THMP) custom hardware with CAN interface
- Controlling LED pulser for monitoring radiation damages and transmission of the PWO crystals custom hardware with CAN interface (not yet implemented)
- Monitoring and setting power supplies
 - Photodetectors: power supply by ISEG with CAN interface
 - LED pulser: ISEG NHQ202M with RS232C interface
- Monitoring e.g. temperature and fan speed of VME crates by Wiener via CAN bus
- Using the I-7565 USB/CAN Converter

	Devices 00000	EPICS Applications	First Experiences using EPICS O	Conlusion and Outlo	
I-7565 l	JSB/CAN	Converter		RUE	3

- Allows testing, readout, setting and controlling of all devices connected to CAN bus
- Supports CAN 2.0A and 2.0B
- Transfer rate of up to 1 Mbps for CAN and 921.6 kbps for USB (USB baudrate is fixed)

	Devices 00000	EPICS Applications	First Experiences using EPICS O	Conlusion and Outlook
l-7565 l	JSB/CAN	Converter		

- Allows testing, readout, setting and controlling of all devices connected to CAN bus
- Supports CAN 2.0A and 2.0B
- Transfer rate of up to 1 Mbps for CAN and 921.6 kbps for USB (USB baudrate is fixed)
- Syntax for sending and receiving a standard CAN data frame: tIIILDD...
 - $\bullet~t \rightarrow$ Represent a standard data frame
 - III \rightarrow 11 bit identifier (000 7FF)
 - L \rightarrow Data length (0 8)
 - DD... \rightarrow Input data frame value
- Uses ttyUSB as interface

F. Feldbauer (RUB EP I)

Devices	EPICS Applications	First Experiences using EPICS
000000	000000	

RUB

I-7565 USB/CAN Converter

GUI build in CSS (DESY version)

m Layers				
	USBCA	N Conver	ter	
Read Configuration	General		Status of CAN register	
J	CAN baud rate:	1000	Bus:	OK
	CAN transmit error:	0	Mode:	ОК
	CAN receive error:	0	Buffer:	ОК
			Stuff:	ОК
	Status of CAN/USB FIFO	Overflow flag	CRC:	ОК
	CAN:	ОК	Form:	ОК
	USB:	ок	Acknowledgment:	ОК
Clear CAN/USB Fifo	Checksum:	NO	Change baud rate:	baud rate
	Error Response:	NO		
Reboot USBCAN	Change USB config	guration	Test of I/O	

Devices	EPICS Applications	First Experiences using EPICS	Conlusion and
000000			

I-7565 USB/CAN Converter

GUI build in CSS (DESY version)

oom Layers	usr/Epics/css/workspa	ace/USBCAN/USB	CAN.css-sds			
	USBCA	N Conver	ter			
Read Configuration	General		Status of CAN re	gister		
	CAN baud rate:	1000	Bus:	OK		
	CAN transmit error:	0	Mode:	ОК		
	CAN receive error:	0	Buffer:	OK		
			Stuff:	ОК		
	Status of CAN/USB FIFC	Overflow flag	CRC:	OK		
	CAN	ОК	Form:	ОК		
	USB:	ОК	Acknowledgment:	OK	CAN/USBCAN debug, css-sds	_
	Checksum:	NO		Layers	CAN/OBCANGEDUG/CSS-SUS	_
Clear CAN/USB Fifo	Error Response:	NO			Test of I/O	
Reboot USBCAN	Change USB confi	guration	Test	Send / I	Receive	
	-		Se	nd:		
			Re	ceive:	98021B2C	
				Rec	eive	
			Re	ceive:	t08021B2C	
			1160.6	Mana ada		

	Devices 000000	EPICS Applications	First Experiences using EPICS O	Conlusion and Outlook
THMP				RUB

 THMP: Temperature and Humidity Monitoring for PANDA Consists of a mainboard and 8 piggyback boards for humidity sensors and temperature sensors, respectively

	Devices 000000	EPICS Applications	First Experiences using EPICS O	Conlusion and Outlook
THMP				RUB

- THMP: Temperature and Humidity Monitoring for PANDA Consists of a mainboard and 8 piggyback boards for humidity sensors and temperature sensors, respectively
- Read-out via CAN-Interface: CAN ID can be changed with HEX-Code switch (0x680 - 0x68F)

	Devices 000000	EPICS Applications	First Experiences using EPICS O	Conlusion and Outlook
THMP				RUB

- THMP: Temperature and Humidity Monitoring for PANDA Consists of a mainboard and 8 piggyback boards for humidity sensors and temperature sensors, respectively
- Read-out via CAN-Interface: CAN ID can be changed with HEX-Code switch (0x680 - 0x68F)
- Send 1 byte data frame to THMP with channel number to read-out the appropriate channel THMP answer is 2 byte long (14-bit ADC) – will be extended (e.g. checksum)

	Devices 000000	EPICS Applications	First Experiences using EPICS O	Conlusion and Outlook
THMP				RUB

- THMP: Temperature and Humidity Monitoring for PANDA Consists of a mainboard and 8 piggyback boards for humidity sensors and temperature sensors, respectively
- Read-out via CAN-Interface: CAN ID can be changed with HEX-Code switch (0x680 - 0x68F)
- Send 1 byte data frame to THMP with channel number to read-out the appropriate channel THMP answer is 2 byte long (14-bit ADC) – will be extended (e.g. checksum)
- Every channel is read-out by its own record

	Devices ○○○○●○	EPICS Applications	First Experiences using EPICS O	Conlusion	and Outlook
THMP					RUB

Zoom	Layers							
			Т	нмр	Read-	Out		
				Last Re	ead-out val	lue:		
680:	CH50: 1855.2	5000000	view al	l channe	eis 688:	Initi	alisation	View all channels
681:	CH50: 3306.0	0000000	view al	l channe	els 689:	Initi	alisation	view all channels
682:	Initialisa	tion	view al) shanna	68A:	Initi	alisation	view all channels
683:	Initialisa	tion	VIEW at	l shanni	68B:	Initi	alisation	view all channels
684:	Initialisa	tion	VIEW B	l cheime	68C:	Initi	alisation	view all channels.
685:	Initialisa	tion	view a	l channa	68D:	Initi	alisation	view all channels
686:	Initialisa	tion	view ai	I channs	68E:	Initi	alisation	view all channels
687:	Initialisa	tion	VIEW A	l stranna	68F:	Initi	alisation	view all channels
			Scan	Interva	lls:			Control:
680: [10 second	681:	10 second	682:	Initialisation	683:	Initialisation	Debug
684:	Initialisation	685:	Initialisation	686:	Initialisation	687:	Initialisation	
688:	Initialisation	689:	Initialisation	68A:	Initialisation	68B:	Initialisation	
68C:	Initialisation	68D:	Initialisation	68E:	Initialisation	68F:	Initialisation	

	Devices ○○○○●○	EPICS Applications	First Experiences using EPICS O	Conlusion and Outlook
THMP				RUB

Zoom	Lavers		MP/THMP.										
	i Edycio												
		-			THMP/	THMPview	Chann	els.css-	sds?ID=1	664			
		Zoom	Layers										
580:	CH50: 1855.25000000			т	нмр	Chann	el C	verv	view	680			
581:	CH50: 3306.00000000	CH00:	1,846.50	mV	CH16	1,840.00	mV	CH32:	4,095.75	mV	CH48:	64.25	mV
582:	Initialisation	CH01:	1,844.25	mV	CH17:	1,851.75	mV	CH33;	1,844.00	mV	CH49:	1,850.50	mV
83	Initialisation	CH02:	1,854.00	mV	CH18	1,861.00	mV	CH34:	1,843.50	mV	CH50:	1,855.25	mV
274		CH03:	2,937.00	mV	CH19:	2,953.25	mV	CH35:	2,957.25	mV	CH51:	2,941.50	mV
84:	Initialisation	CH04:	2,780.75	mV	CH20:	0.00	mV	CH36:	2,938.75	mV	CH52:	2,965.00	mV
85:	Initialisation	CH05:	2,969.75	mV	CH21:	2,960.50	mV	CH37:	2,954.75	mV	CH53	4,095.75	mV
86:	Initialisation	CH06:	1,600.00	mV	CH22:	1,623.25	mV	CH38:	1,648.00	mV	CH54:	1,658.75	mV
87:	Initialisation	CH07:	0.00	mV	CH23:	0.00	mV	CH39:	0.00	mV	CH55:	0.00	mV
		CH08:	1,852.75	mV	CH24:	147.50	mV	CH40:	4,095.75	mV	CH56:	1,846.25	mV
	10 10	CH09:	1,838.50	mV	CH25:	1,864.75	mV	CH41:	1,846.75	mV	CH57:	1,846.00	mV
80:	10 second 681: 10 s	CH10:	1,852.00	mV	CH26:	1,858.25	mV	CH42:	1,850.00	mV	CH58:	1,851.75	mV
84:	Initialisation 685: Initia	CH11:	2,954.25	mV	CH27:	2,953.25	mV	CH43:	2,956.25	mV	CH59:	2,935.25	mV
88:	Initialisation 689: Initia	CH12:	2,797.00	mV	CH28:	2,805.25	mV	CH44:	2,950.50	mV	CH60:	2,953.75	mV
8C:	Initialisation 68D: Initia	CH13:	2,949.25	mV	CH29:	2,937.25	mV	CH45:	2,962.50	mV	CH61:	2,952.00	mV
		CH14:	1,603.50	mV	CH30:	1,622.00	mV	CH46:	1,650.00	mV	CH62:	1,681.00	mV
		CH15:	0.00	mV	CH31:	0.00	mV	CH47:	0.00	mV	CH63:	0.00	mV

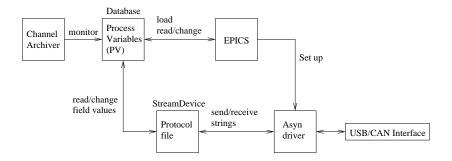
	Devices ○○○○●	EPICS Applications	First Experiences using EPICS O	Conlusion and Outlook
Further	Devices			RUB

ISEG NHQ202M Dual HV Power supply

- Dual HV supply in single NIM package
- Regulated 0 to 2 kV DC output, 0 to 6 mA
- Programmable via RS232C interface
- Readout and change of all parameters

0	000000	000000	0	
Further D	evices			

RUE


ISEG NHQ202M Dual HV Power supply

- Dual HV supply in single NIM package
- Regulated 0 to 2 kV DC output, 0 to 6 mA
- Programmable via RS232C interface
- Readout and change of all parameters

VME Crate by Wiener

- Monitoring temperatures, voltages, fan speed, status and control of VME Crate via CAN, RS232C or Ethernet is possible
- Currently most important functions controlled and readout with EPICS via CAN

	Devices 000000	EPICS Applications	First Experiences using EPICS	Conlusion and Outlook
Overview	1			RUB

	Devices 000000	EPICS Applications	First Experiences using EPICS O	Conlusion and Outlook
PV Nan	ning			RUB

• In PV names variables are used for subsystem, sector, device ID and optionally channel number

		EPICS Applications	First Experiences using EPICS	Conlusion and Outlook
		00000		
PV Nan	ning			RUB

- In PV names variables are used for subsystem, sector, device ID and optionally channel number
- Example: THMP readout record PANDA:\$(subsys):\$(sector):THMP\$(ID):SendMsg\$(no)

ntroduction	Devices	EPICS Applications	First Experiences using EPICS	Conlusion a	and Outlook
		00000			
PV Namin	g				RUB

- In PV names variables are used for subsystem, sector, device ID and optionally channel number
- Example: THMP readout record PANDA:\$(subsys):\$(sector):THMP\$(ID):SendMsg\$(no)
- Assigning values to the variables
 - when loading the database dbLoadRecords("db/dbTHMP.db","subsys=EMC,...")

Introduction	Devices	EPICS Applications	First Experiences using EPICS	Conlusion and Outlook	
		00000			
PV Namin	g			RUB	

- In PV names variables are used for subsystem, sector, device ID and optionally channel number
- Example: THMP readout record PANDA:\$(subsys):\$(sector):THMP\$(ID):SendMsg\$(no)
- Assigning values to the variables
 - when loading the database dbLoadRecords("db/dbTHMP.db","subsys=EMC,...")
 - or using a database template dbLoadTemplate "db/thmp.substitutions"

Introduction	Devices	EPICS Applications	First Experiences using EPICS	Conlusion a	and Outlook
		00000			
PV Namin	g				RUB

- In PV names variables are used for subsystem, sector, device ID and optionally channel number
- Example: THMP readout record PANDA:\$(subsys):\$(sector):THMP\$(ID):SendMsg\$(no)
- Assigning values to the variables
 - when loading the database dbLoadRecords("db/dbTHMP.db","subsys=EMC,...")
 - or using a database template dbLoadTemplate "db/thmp.substitutions"
- \Rightarrow PANDA: EMC: PROTO192: THMP1664: SendMsg00

		EPICS Applications	First Experiences using EPICS	Conlusion	and Outlook
		00000			
PV Namin	ıg				RUB

```
• Structure of a substitution file:
file "db/dbTHMP.db" {
    pattern { subsys, sector, ID, no }
        { "EMC", "PROT0192", 1664, 00 }
        { "EMC", "PROT0192", 1664, 01 }
        ...
}
```

		EPICS Applications	First Experiences using EPICS	Conlusion	and Outlook
		00000			
PV Namin	g				RUB

```
• Structure of a substitution file:
file "db/dbTHMP.db" {
    pattern { subsys, sector, ID, no }
        { "EMC", "PROTO192", 1664, 00 }
        { "EMC", "PROTO192", 1664, 01 }
        ...
    }
```

Compatible with MSI (Macro Substitution and Include Tool)

		EPICS Applications	First Experiences using EPICS	Conlusion	and Outlook
		00000			
PV Namin	g				RUB

```
• Structure of a substitution file:
file "db/dbTHMP.db" {
    pattern { subsys, sector, ID, no }
        { "EMC", "PROTO192", 1664, 00 }
        { "EMC", "PROTO192", 1664, 01 }
        ...
}
```

- Compatible with MSI (Macro Substitution and Include Tool)
- Using the variables allows you to write one record and load it as often as it is needed.

	Devices 000000	EPICS Applications	First Experiences using EPICS O	Conlusion and Outlook
Streaml	Device Mo	odule and Asy	yn	RUB

- Generic EPICS module, supports devices controlled by sending and receiving strings via serial port or ethernet
- Strings are defined in protocol files

		EPICS Applications	First Experiences using EPICS	Conlusion and Outlook
		000000		
StreamD	Device Mo	odule and Asy	yn	RUB

- Generic EPICS module, supports devices controlled by sending and receiving strings via serial port or ethernet
- Strings are defined in protocol files
- Example: $THM\overline{P}$ readout
- Set Epics environment variable: epicsEnvSet("STREAM_PROTOCOL_PATH","\$(TOP)/protocols")

	Devices 000000	EPICS Applications	First Experiences using EPICS O	Conlusion and Outlook
StreamD	evice Mo	dule and As	syn	DUR

- Generic EPICS module, supports devices controlled by sending and receiving strings via serial port or ethernet
- Strings are defined in protocol files
- Example: $THM\overline{P}$ readout
- Set Epics environment variable: epicsEnvSet("STREAM_PROTOCOL_PATH","\$(TOP)/protocols")

```
• and set up interface (serial port):
    drvAsynSerialPortConfigure("USBCAN1","/dev/ttyUSBO")
    asynSetOption ("USBCAN1", 0, "baud", "921600")
    asynSetOption ("USBCAN1", 0, "bits", "8")
    asynSetOption ("USBCAN1", 0, "parity", "none")
    asynSetOption ("USBCAN1", 0, "stop", "1")
    asynSetOption ("USBCAN1", 0, "clocal", "N")
    asynSetOption ("USBCAN1", 0, "crtscts", "N")
```



```
Record functions as output and input:
record(scalcout,"PANDA:EMC:$(sector):THMP$(ID):SendMsg$(no)")
{
  field (DTYP, "stream")
  field (INPA, "$(no)")
  field (INPB, "$(ID)")
  field (OUT, "@THMP.proto SendMsg USBCAN1")
}
```



```
Record functions as output and input:
record(scalcout,"PANDA:EMC:$(sector):THMP$(ID):SendMsg$(no)")
{
  field (DTYP, "stream")
  field (INPA, "$(no)")
  field (INPB, "$(ID)")
  field (OUT, "@THMP.proto SendMsg USBCAN1")
}
```

```
Protocol controls the named interface:
SendMsg {
  out "t%(B)3X1%(A)2X";
  in "%*5c%(LL)X";
}
```

Introduction	Devices	EPICS Applications	First Experiences using EPICS	Conlusion	and Outlook
0	000000	000000	0		
Channel A	rchiver				RUB

- Channel Archiver used to store data to hard disk
- Configuration with xml file (Which PV's should be saved, period, etc.)

Introduction	Devices	EPICS Applications	First Experiences using EPICS	Conlusion and Outlook
O	000000	○○○○○●	O	
Channe	el Archiver			RUB

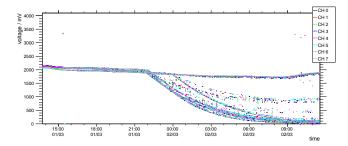
- Channel Archiver used to store data to hard disk
- Configuration with xml file (Which PV's should be saved, period, etc.)
- Channel Archiver can run a data server
 - \Rightarrow Connect to CSS Data Browser

Introduction	Devices 000000	EPICS Applications	First Experiences using EPICS	Conlusion a	and Outlook
Channel A					RUB

- Channel Archiver used to store data to hard disk
- Configuration with xml file (Which PV's should be saved, period, etc.)
- Channel Archiver can run a data server
 ⇒ Connect to CSS Data Browser
- Using ArchiveDaemon to create daily sub-archives

Introduction	Devices	EPICS Applications	First Experiences using EPICS	Conlusion	and Outlook
0	000000	000000	0		
Channel A	rchiver				RUB

- Channel Archiver used to store data to hard disk
- Configuration with xml file (Which PV's should be saved, period, etc.)
- Channel Archiver can run a data server
 ⇒ Connect to CSS Data Browser
- Using ArchiveDaemon to create daily sub-archives
- In future storing the data as Sql database


• Tested the radiation hardness of humidity sensors and voltage regulators at the Gießen Irradiation Facility

- Tested the radiation hardness of humidity sensors and voltage regulators at the Gießen Irradiation Facility
- Parts were irradiated for 19 hours with a $^{60}{\rm Co}~\gamma{\text -source}$ at dose rates of 215 Gy/h and 54 Gy/h, respectively
- Used THM \overline{P} and EPICS for monitoring output voltages

- Tested the radiation hardness of humidity sensors and voltage regulators at the Gießen Irradiation Facility
- Parts were irradiated for 19 hours with a $^{60}{\rm Co}~\gamma{\text -source}$ at dose rates of 215 Gy/h and 54 Gy/h, respectively
- Used THM \overline{P} and EPICS for monitoring output voltages

See talk "Radiation hardness tests of electronics for the EMC Slow Control" by Patrick Friedel (after coffee break at the EMC session)

Introduction O	Devices 000000	EPICS Applications	First Experiences using EPICS O	Conlusion and Outlook
Conlusio	n and Oi	utlook		RUB

Conclusion

- Slow Control for Proto192 nearly complete. (HV Power supply, temperature and humidity monitoring)
- Using StreamDevice for easy access to hardware interfaces
- Using ChannelArchiver to store data to hard disk

	Devices 000000	EPICS Applications	First Experiences using EPICS O	Conlusion and Outlook		
Conlusion and Outlook						

Conclusion

- Slow Control for Proto192 nearly complete. (HV Power supply, temperature and humidity monitoring)
- Using StreamDevice for easy access to hardware interfaces
- Using ChannelArchiver to store data to hard disk

Outlook

- Writing application for the LED Pulser
- Implement extension for applying calibration data of sensors (e.g. BURT)
- Implementation of database interface