Temperature and Humidity Monitoring for Proto192

Florian Feldbauer

Experimentelle Hadronenphysik Ruhr-Universität Bochum

XXX. PANDA Collaboration Meeting September 8th, 2009

Outline

- 1 Introduction
 - PANDA Electromagnetic Calorimeter
 - The Proto192
- 2 Temperature and Humidity Sensors
 - Temperature Sensors
 - Humidity Sensors
- 3 Temperature and Humidity Monitoring Board
- 4 Tests of the THMP
 - Current Sources
 - Prototype of the THMP
 - Measurements in a Magnetic Field
 - Irradiation Tests
- 5 Conclusion and Outlook

Introduction

Temperature and Humidity Sensors Temperature and Humidity Monitoring Board Tests of the THMP Conclusion and Outlook

PANDA Electromagnetic Calorimeter The Proto192

PANDA Electromagnetic Calorimeter

- Electromagnetic calorimeter (EMC) of the PANDA target spectrometer consists of ~ 16000 PWO crystals
- Designed as barrel with 2 endcaps
- Cooled down to -25 °C to increase light yield of PWO by factor 4
- Energy resolution: $\frac{\sigma_E}{E} \leq 1\% \oplus \frac{2\%}{\sqrt{E[\text{GeV}]}}$

Introduction

Temperature and Humidity Sensors Temperature and Humidity Monitoring Board Tests of the THMP Conclusion and Outlook

PANDA Electromagnetic Calorimeter The Proto192

The Proto192

- Prototype of the forward endcap of the EMC consisting of 192 PWO crystals
- Allows tests of mounting, cooling, and read-out electronics
- Operation at -25 °C
- Proto192 will be used as test platform for the temperature and humidity monitoring

Introduction

Temperature and Humidity Sensors Temperature and Humidity Monitoring Board Tests of the THMP Conclusion and Outlook

PANDA Electromagnetic Calorimeter The Proto192

Thermal Aspects

- Temperature dependency of light yield $\frac{dLY}{dT} = 3\%/K$ at $-25~^{\circ}C$
- $\bullet\,$ Temperature stability is essential for high energy resolution temperature variation ≤ 0.1 K
- $\bullet\,$ Due to shower fluctuations, temperature gradient ≤ 0.1 K/cm
- Avoid formation of ice
- Monitoring of temperature and humidity is mandatory
 ⇒ Development of the THMP (Temperature and Humidity Monitoring Board for PANDA)

Temperature Sensors Humidity Sensors

Temperature Sensors

- 60 cm platinum wire fixed in Kapton foils with a resistance of $\sim 100~\Omega$ at 0 $^\circ\text{C}$
- Dimensions: (30 \times 20) mm² 60 μ m thick
- Aim for sensitivity of 0.05 K ($\hat{=}$ 0.02 Ω) $\hat{=}$ 0.15% change of light yield
- To be mounted along the crystal

Temperature Sensors Humidity Sensors

Temperature Sensors

- 60 cm platinum wire fixed in Kapton foils with a resistance of \sim 100 Ω at 0 $^\circ\text{C}$
- Dimensions: (30 \times 20) mm² 60 μ m thick
- Aim for sensitivity of 0.05 K ($\stackrel{\frown}{=} 0.02 \Omega$) $\stackrel{\frown}{=} 0.15\%$ change of light yield
- To be mounted along the crystal

Temperature Sensors Humidity Sensors

Read-out of the Temperature Sensors

• Temperature Sensors are read-out via four-terminal sensing:

- Current source provides 1 mA $U_{\vartheta} = 1 \text{ mA} \cdot 100 \ \Omega = 100 \text{ mV}$
- \bullet Measurement range $-30\ ^\circ C$ to $+30\ ^\circ C$
- Signals are amplified to use full range of the ADC (0 - 4096 mV)

Temperature Sensors Humidity Sensors

Humidity Sensors HIH-4000

- Using HIH-4000 series from Honeywell
- Output voltage \propto relative humidity (RH) 0.8 3.8 V
- Size of the sensor without pins (4.2 \times 8.6) mm^2
- Operating range down to $-40~^\circ\text{C}$ and 0% RH
- Accuracy of 3.5% RH

Temperature and Humidity Monitoring Board for $\overline{P}ANDA$ (THM \overline{P})

- Designed THMP as mainboard with connectors to 8 piggyback boards
- 64 channels (8 channels per piggybackboard)
- Using 14-bit ADC with a range of 0 to 4096 mV
- Low power microcontroller with CAN-Interface

Temperature and Humidity Monitoring Board for $\overline{P}ANDA$ (THM \overline{P})

- Board is designed to operate inside the cooled area
 - \Rightarrow following conditions must be fulfilled:
 - Operation range -30 to +30 °C
 - Proper operation in a magnetic field of B = 1.3 T (forward endcap)

(barrel: magnetic field of up to 2.5 T)

- Radiation hardness up to 10 mGy/h corresponding to position behind innermost crystals
- Low power consumption

Ultra-thin cables

- Between crystals and mounting structure only 80 μm space is available
- Developed ultra-thin cables for sensors, 55 $\mu {\rm m}$ thick

Connections: temperature sensors

humidity sensors

Current Sources Prototype of the THMP Measurements in a Magnetic Field Irradiation Tests

Current Sources

- Requirement: drift should be less than $2 \cdot 10^{-4}$ 0.05 °C at 0 °C \Rightarrow 0.02 Ω at 100 Ω
- 3 different types of current sources tested

Current Sources Prototype of the THMP Measurements in a Magnetic Field Irradiation Tests

Current Sources

- Requirement: drift should be less than $2 \cdot 10^{-4}$ 0.05 °C at 0 °C \Rightarrow 0.02 Ω at 100 Ω
- 3 different types of current sources tested

Current Sources Prototype of the THMP Measurements in a Magnetic Field Irradiation Tests

Current Source

- Tested all sources in conditioning cabinet for temperature dependencies
- Measured sensor current
- Type 2 gives the best results
- Drift: 10⁻⁵
- At -25 °C nearly constant

Current Sources **Prototype of the THMP** Measurements in a Magnetic Field Irradiation Tests

Prototype of the THMP

Current Sources Prototype of the THM \overline{P} Measurements in a Magnetic Field Irradiation Tests

Measurements in a Magnetic Field

- First 4 min: magnetic field raises to 1.5 T
- Next 3 min: variation of angle between magnetic field and PCB (0° - 90°)
- Last minute: magnetic field goes down to 0 T

Current Sources Prototype of the THMP Measurements in a Magnetic Field Irradiation Tests

- Ran 3 tests with 200 Gy/h at the Gießen Irradiation Facility, used $\rm ^{60}Co~\gamma$ source
- In first test accumulated 660 Gy \Rightarrow Voltage regulators were damaged
- Exchanged the regulators with different types, but also damaged in second test (500 Gy)
- Humidity sensors are radiation hard up to 800 Gy
- In 3rd test only microcontroller and thrid type of voltage regulator (LP3962 from National Semiconductor) were irradiated with a dose of 700 Gy Both parts worked properly

Current Sources Prototype of the THMP Measurements in a Magnetic Field Irradiation Tests

- Ran 3 tests with 200 Gy/h at the Gießen Irradiation Facility, used $\rm ^{60}Co~\gamma$ source
- In first test accumulated 660 Gy \Rightarrow Voltage regulators were damaged
- Exchanged the regulators with different types, but also damaged in second test (500 Gy)
- Humidity sensors are radiation hard up to 800 Gy
- In 3rd test only microcontroller and thrid type of voltage regulator (LP3962 from National Semiconductor) were irradiated with a dose of 700 Gy Both parts worked properly

Current Sources Prototype of the THMP Measurements in a Magnetic Field Irradiation Tests

- Ran 3 tests with 200 Gy/h at the Gießen Irradiation Facility, used $\rm ^{60}Co~\gamma$ source
- In first test accumulated 660 Gy \Rightarrow Voltage regulators were damaged
- Exchanged the regulators with different types, but also damaged in second test (500 Gy)
- Humidity sensors are radiation hard up to 800 Gy
- In 3rd test only microcontroller and thrid type of voltage regulator (LP3962 from National Semiconductor) were irradiated with a dose of 700 Gy Both parts worked properly

Current Sources Prototype of the THMP Measurements in a Magnetic Field Irradiation Tests

- Ran 3 tests with 200 Gy/h at the Gießen Irradiation Facility, used $\rm ^{60}Co~\gamma$ source
- In first test accumulated 660 Gy \Rightarrow Voltage regulators were damaged
- Exchanged the regulators with different types, but also damaged in second test (500 Gy)
- Humidity sensors are radiation hard up to 800 Gy
- In 3rd test only microcontroller and thrid type of voltage regulator (LP3962 from National Semiconductor) were irradiated with a dose of 700 Gy Both parts worked properly

Conclusion and Outlook

- THMP passed all tests
- Radiation hardness tested with a dose of 700 Gy
- Works properly in a magnetic field up to B = 1.5 T
- Temperature dependency
- Set up environmental control for EPICS
- 5 boards will be produced and used in the Proto192
- Behavior at quenching of magnet has to be tested

Conclusion and Outlook

- THMP passed all tests
- Radiation hardness tested with a dose of 700 Gy
- Works properly in a magnetic field up to B = 1.5 T
- Temperature dependency
- Set up environmental control for EPICS
- 5 boards will be produced and used in the Proto192
- Behavior at quenching of magnet has to be tested