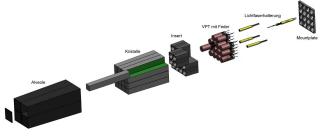
Development of ultra thin PT100 temperature sensors

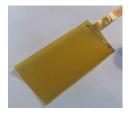
 M. Albrecht¹, F. Feldbauer¹, P. Friedel¹, J. Schulze¹, W. Czarnacki², M. Jaskola², A. Korman², D. Melnychuk², T. Sworobowicz², B. Zwieglinski²

> ¹Ruhr-Universität Bochum ²Andrzej Soltan Institute for Nuclear Studies

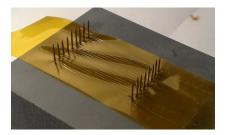
XXXV. PANDA Collaboration Meeting December 3rd, 2010



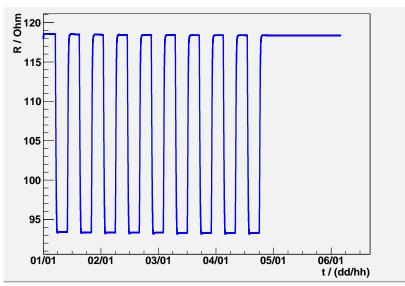
PANDA Electromagnetic Calorimeter and Proto192


- Change of light yield: 4%/K at $-25\,^{\circ}C$
 - \Rightarrow guarantee temperature gradient of <0.1~K/cm
 - \Rightarrow temperature must be homogeneous along crystal and constant over time
 - \Rightarrow Monitoring temperature along crystal is mandatory
- $\bullet\,$ Between alveole and crystal $\sim 100\,\mu{\rm m}$ space available
 - \Rightarrow Commercial temperature sensors can't be used

• \Rightarrow Development of custom sensors is necessary Aim for sensitivity of 0.05 K ($\hat{=} 0.02 \Omega$)

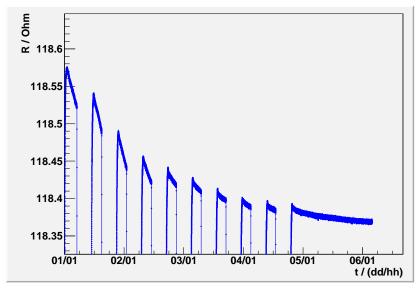

Basic Idea of ultra-thin PT100 sensors

- Using polyimide foil coated with copper
- Etching traces with 1 mm pitch on polyimide foil as cable
- PT100 sensor at end of cable
- Using self-adhesive polyimide foil for insulation
- \Rightarrow 70 μ m thick cable/sensor

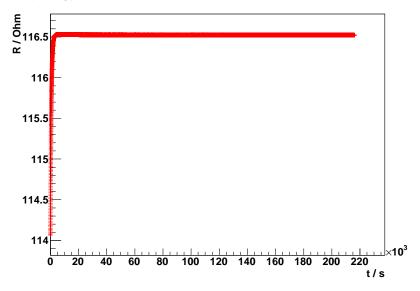


RUF

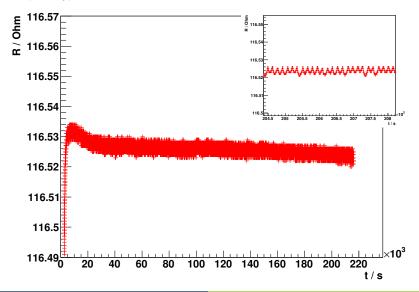
- $\bullet~$ Using platinum wire with ø 25 $\mu \rm{m}$
- Coating copper pads of cable with silver/gold
- Silver-plated conductor adhesive used to connect platinum wire to cable


Prototype tested over 5 days measuring temperature cycles from $\pm 30\,^\circ\text{C}$

RUB


Prototype tested over 5 days measuring temperature cycles from $\pm 30\,^\circ\text{C}$

RUB



F. Feldbauer (RUB EP I)

2nd prototype baked at $+80\,^{\circ}\text{C}$ and tested at $+30\,^{\circ}\text{C}$

2nd prototype baked at $+80\,^{\circ}\text{C}$ and tested at $+30\,^{\circ}\text{C}$

- Two different ways of production are studied
- Evaporation of Pt in vacuum on polyimide cable
 - $R_0 = 120 \,\Omega$
 - Slope coefficient comparable to comercial PT100 sensors
 - Long term stability not yet satisfactory \Rightarrow Further studies needed
- Electrolytic deposition on polyimide cable Work in progress

Conclusion

- Due to space requirements custom PT100 sensors have to be used
- Temperature sensors show decrement in resistance over time
- \bullet Baked sensor \Rightarrow reduced "aging" effect

Conclusion

- Due to space requirements custom PT100 sensors have to be used
- Temperature sensors show decrement in resistance over time
- Baked sensor \Rightarrow reduced "aging" effect

Outlook

- Placing one sensor in exsiccator to outgas water inside ployimide
- Soldering platinum wire to copper pads to study effects of adhesive