

Status of PANDA DCS Activities in Magurele Part II

Alexandu Mario BRAGADIREANU, Dorel PIETREANU, Matei-Eugen VASILE

National Institute for Physics and Nuclear Engineering – Horia Hulubei

Finite State Machines

Finite State Machines

- In control engineering, a **discrete event dynamic system** is a discrete state dynamic system whose state evolution depends entirely on the occurrence of asynchronous discrete events.
- A **finite state machine** is a discrete event system that can be formally represented by a 5-tuple (Q, Σ , δ ,q0,F), where:
 - Q is the finite set of states of the FSM
 - Σ is the finite set of symbols that make up the alphabet of the FSM
 - − δ is the transition function of the FSM: δ : Q × Σ → Q
 - q0 is the initial state of the FSM
 - F is s a set of states of Q (i.e. F⊆Q) called accept states

Finite State Machines

Finite State Machines - Example

- One example of using finite state machines in physics research is the EPICS State Notation Language & Sequencer (http://www-csr.bessy.de/control/SoftDist/sequencer/)
- The State Notation Language is a domain specific programming language "designed for programming finite state machines in such a way that it is easy for the program to interact with EPICS process variables (PVs)"
- The Sequencer is a set of tools, libraries and applications that can be used to create distributed real-time control systems and which is based on the State Notation Language

DCS Developments

- A DCS partition is made up of:
 - Subdetector (served by all the subsystems of a DCS partition)
 - Subsystems
 - I/O Controllers
 - Gateway (shared by all the I/O controllers of a DCS partition)

- In order to test the feasibility of this architecture, a development setup was created:
 - subdetector: a thermistor
 - subsystem: a data acquisition board
 - I/O controller: communication software and an EPICS soft IOC running on a single-board computer
 - gateway: EPICS PV Gateway
 extension running on a regular
 PC

- Development setup:
 - subdetector: NTC10K thermistor and its circuit board, connected to one of the analog inputs of the:
 - subsystem: MCCDAQ USB-7204 data acquisition board, connected via USB to the:
 - I/O controller: Raspberry Pi, ARMv6-based single-board computer, running Linux (tested with multiple distributions: Raspbian and Arch Linux), a libusb-based communication server developed by IFIN-HH for interfacing with the data acquisition board, and an EPICS soft IOC that is accessible, over Ethernet, via the:
 - gateway: regular PC, running Linux and the EPICS PV Gateway extension

DCS Subdetector System: I/O controller

- The I/O controller runs two pieces of software:
 - The IFIN-HH developed communication software to interface with the MCCDAQ USB-7204 data acquisition board
 - The *EPICS* soft *IOC* that uses the communication software to interface the *USB-7204*'s with the outside world
- Given that the *USB-7204* provides a string-based interface over USB, the communication software leverages this by using the *libsusb* library to communicate with the *USB-7204*
- Given the asynchronous nature of the *USB-7204*'s stringbased interface, the *EPICS asyn* driver was a good fit for the interface between the *USB-7204* and the *EPICS soft IOC*

DCS Subdetector System: I/O controller

- However, the asyn driver alone wouldn't have been the best choice. In order to have a more flexible interface between the two I/O controller components, StreamDevice over the asyn driver was chosen
- The communication software communicates with the soft IOC over a standard TCP/IP socket. This setup has multiple advantages:
 - Allows the easy use of *StreamDevice*, which makes getting the *soft IOC* to work with the communication software much easier
 - The communication software is not intrinsically dependent on EPICS. It could be used with any higher level interface that can be made to communicate over TCP/IP sockets

DCS Subdetector System: I/O controller

DCS Subdetector System: Gateway

- The gateway can be any kind of computer that can run the EPICS PV
 Gateway extension and has two network interfaces: one on the internal
 network, the one to which the I/O controller is connected as well, and one
 on the external network, the one to which the EPICS clients from the
 supervisory layer are connected
- The *EPICS PV Gateway* extension works as a server software that, for the I/O controller acts as an *EPICS* client and for the client devices in the supervisory layer acts as an *EPICS* server
- The EPICS PV Gateway can:
 - Control which process variables (PVs) are available on the supervisory layer, thus filtering access by PV
 - Control who is allowed to access which PVs, thus filtering access by end user
 - Provide PV aliases for the PVs published by the IOCs behind the gateway

DCS Supervisory Layer: CSS EPICS Client

- The subdetector system presented up to this point can be controlled, from the Supervisory Layer, by an *EPICS* client
- For this purpose, CSS (Controls System Studio) was used to develop an operator interface that can control the MCCDAQ USB-7204 based subsystem:
 - The operator interface is built using the BOY (Best OPI Yet) CSS plugin
 - It has two components:
 - A configuration interface
 - A control/monitoring interface

DCS Supervisory Layer: CSS Configuration Interface

DCS Supervisory Layer: CSS Monitoring Interface

