
Status of PANDA DCS Activities in Magurele
Part II

Alexandu Mario BRAGADIREANU, Dorel PIETREANU, Matei-Eugen VASILE

National Institute for Physics and Nuclear Engineering – Horia Hulubei

Finite State Machines

Finite State Machines

● In control engineering, a discrete event dynamic system is a
discrete state dynamic system whose state evolution depends
entirely on the occurrence of asynchronous discrete events.

● A finite state machine is a discrete event system that can be
formally represented by a 5-tuple (Q,Σ,δ,q0,F), where:

– Q is the finite set of states of the FSM

– Σ is the finite set of symbols that make up the alphabet of the FSM

– δ is the transition function of the FSM: δ: Q × Σ → Q

– q0 is the initial state of the FSM

– F is s a set of states of Q (i.e. F Q) called ⊆ accept states

Finite State Machines

Finite State Machines - Example

● One example of using finite state machines in physics research is
the EPICS State Notation Language & Sequencer
(http://www-csr.bessy.de/control/SoftDist/sequencer/)

● The State Notation Language is a domain specific programming
language “designed for programming finite state machines in such
a way that it is easy for the program to interact with EPICS process
variables (PVs)”

● The Sequencer is a set of tools, libraries and applications that can
be used to create distributed real-time control systems and which
is based on the State Notation Language

http://www-csr.bessy.de/control/SoftDist/sequencer/

DCS Developments

DCS Design DCS DesignDCS Architecture

Client

 Channel Access Server

Gateway

I/O Controller

 (GbE, CA)

 GbE, CA

Sub-system

Sub-detector ● A DCS partition is made up of:

– Subdetector (served by all
the subsystems of a DCS
partition)

– Subsystems

– I/O Controllers

– Gateway (shared by all the
I/O controllers of a DCS
partition)

DCS Subdetector System Architecture

DCS Design DCS DesignDCS Architecture

Client

 Channel Access Server

Gateway

I/O Controller

 (GbE, CA)

 GbE, CA

Sub-system

Sub-detector
● In order to test the feasibility of

this architecture, a development
setup was created:

– subdetector: a thermistor

– subsystem: a data acquisition
board

– I/O controller: communication
software and an EPICS soft
IOC running on a single-board
computer

– gateway: EPICS PV Gateway
extension running on a regular
PC

DCS Subdetector System Architecture

DCS Subdetector System Architecture

DCS Subdetector System Architecture

● Development setup:

– subdetector: NTC10K thermistor and its circuit board, connected
to one of the analog inputs of the:

– subsystem: MCCDAQ USB-7204 data acquisition board,
connected via USB to the:

– I/O controller: Raspberry Pi, ARMv6-based single-board
computer, running Linux (tested with multiple distributions:
Raspbian and Arch Linux), a libusb-based communication server
developed by IFIN-HH for interfacing with the data acquisition
board, and an EPICS soft IOC that is accessible, over Ethernet,
via the:

– gateway: regular PC, running Linux and the EPICS PV
Gateway extension

DCS Subdetector System: I/O controller

● The I/O controller runs two pieces of software:

– The IFIN-HH developed communication software to interface
with the MCCDAQ USB-7204 data acquisition board

– The EPICS soft IOC that uses the communication software to
interface the USB-7204's with the outside world

● Given that the USB-7204 provides a string-based interface
over USB, the communication software leverages this by using
the libsusb library to communicate with the USB-7204

● Given the asynchronous nature of the USB-7204's string-
based interface, the EPICS asyn driver was a good fit for the
interface between the USB-7204 and the EPICS soft IOC

DCS Subdetector System: I/O controller

● However, the asyn driver alone wouldn't have been the best
choice. In order to have a more flexible interface between the
two I/O controller components, StreamDevice over the asyn
driver was chosen

● The communication software communicates with the soft IOC
over a standard TCP/IP socket. This setup has multiple
advantages:

– Allows the easy use of StreamDevice, which makes getting the
soft IOC to work with the communication software much easier

– The communication software is not intrinsically dependent on
EPICS. It could be used with any higher level interface that can
be made to communicate over TCP/IP sockets

USB

Channel Access over Ethernet

DCS Subdetector System: I/O controller

EPICS soft IOC

IFIN-HH
developed
communication
software

TCP/IP over Ethernet

libusb

Message dispatcher

TCP/IP socket-based interface

asyn dirver

StreamDevice

IOC

gateway

MCCDAQ USB-7204

}
}

DCS Subdetector System: Gateway
● The gateway can be any kind of computer that can run the EPICS PV

Gateway extension and has two network interfaces: one on the internal
network, the one to which the I/O controller is connected as well, and one
on the external network, the one to which the EPICS clients from the
supervisory layer are connected

● The EPICS PV Gateway extension works as a server software that, for the
I/O controller acts as an EPICS client and for the client devices in the
supervisory layer acts as an EPICS server

● The EPICS PV Gateway can:

– Control which process variables (PVs) are available on the supervisory
layer, thus filtering access by PV

– Control who is allowed to access which PVs, thus filtering access by
end user

– Provide PV aliases for the PVs published by the IOCs behind the
gateway

DCS Supervisory Layer: CSS EPICS Client
● The subdetector system presented up to this point can be

controlled, from the Supervisory Layer, by an EPICS client

● For this purpose, CSS (Controls System Studio) was used to
develop an operator interface that can control the MCCDAQ
USB-7204 based subsystem:

– The operator interface is built using the BOY (Best OPI Yet) CSS
plugin

– It has two components:
● A configuration interface
● A control/monitoring interface

DCS Supervisory Layer: CSS Configuration Interface

DCS Supervisory Layer: CSS Monitoring Interface

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

