

Status of PANDA DCS activities in Magurele - Part I -

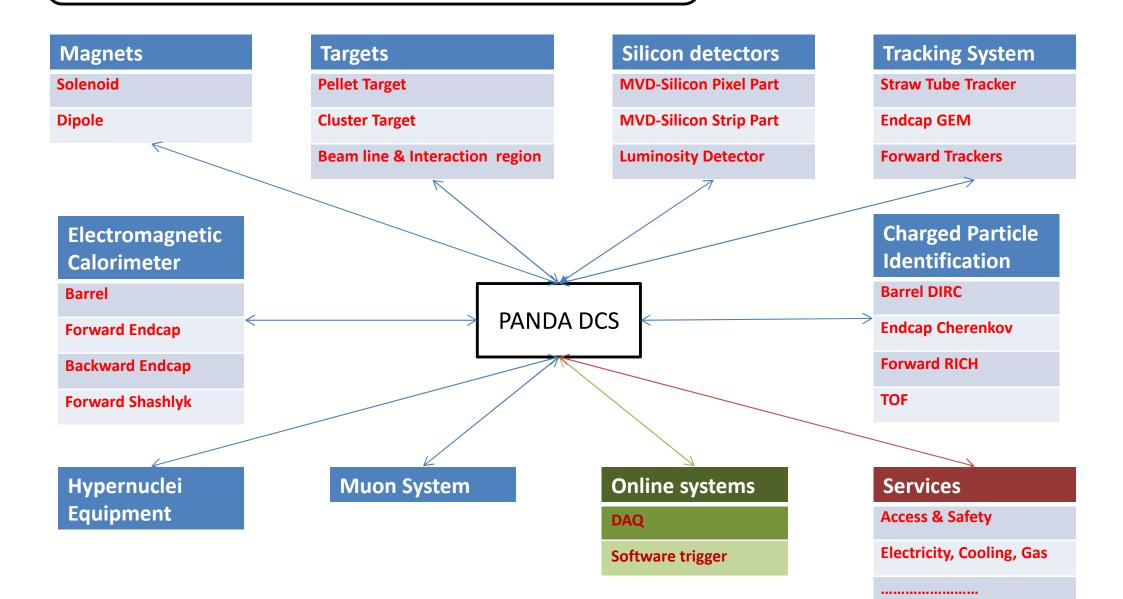
Alexandru-Mario BRAGADIREANU, Dorel PIETREANU, Matei-Eugen VASILE

Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH

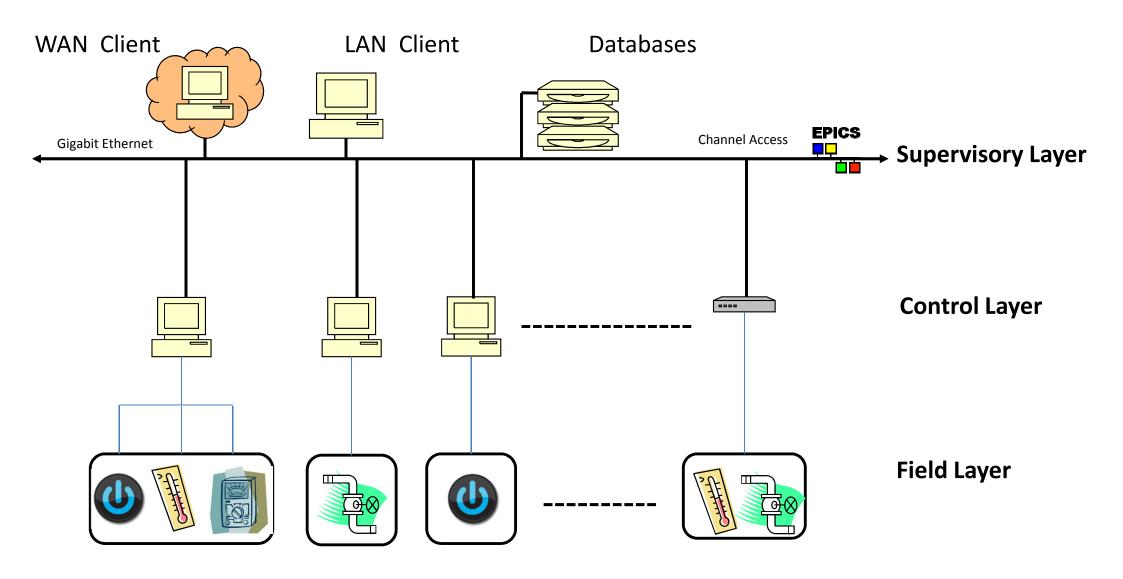
Status of PANDA DCS activities in Magurele - Part I -

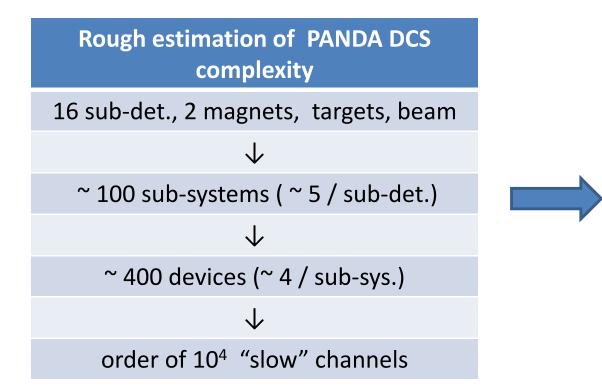
Contents:

1) PANDA DCS Architecture

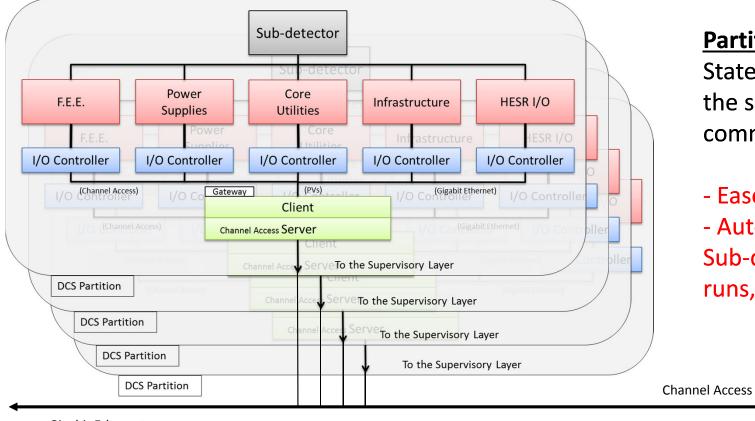

2) Linux-Ready Embedded ARM boards as IOC's

- STT Gas System (RS-232);
- CAN Bus;
- USB Multifunction DAQ.
- 3) ATLAS ELMB128 board


PANDA DCS Architecture – centralized view


PANDA DCS Hardware Architecture

PANDA DCS Architecture - Complexity


(Some) Requirements

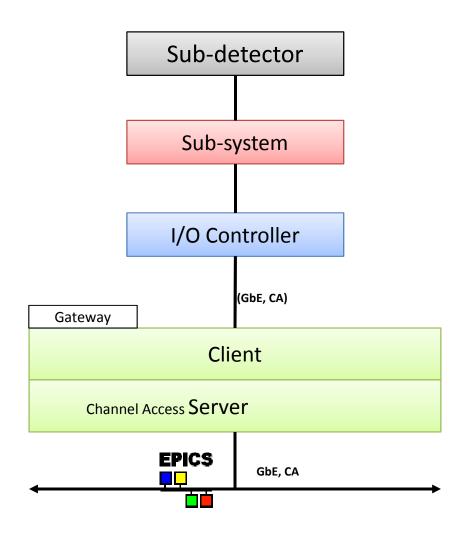
- Scalable, Modular
- Graphical UI
- Non-expert operation

PANDA DCS Architecture - Modularity

<u>**Partitioned DCS:**</u> pool of Finite State Machine's managed from the supervisory layer by simple commands;

- Eases the commissioning;

EPICS


- Autonomous operation of each Sub-detector (calibration, physics runs, maintenance);

Gigabit Ethernet

PANDA DCS Architecture

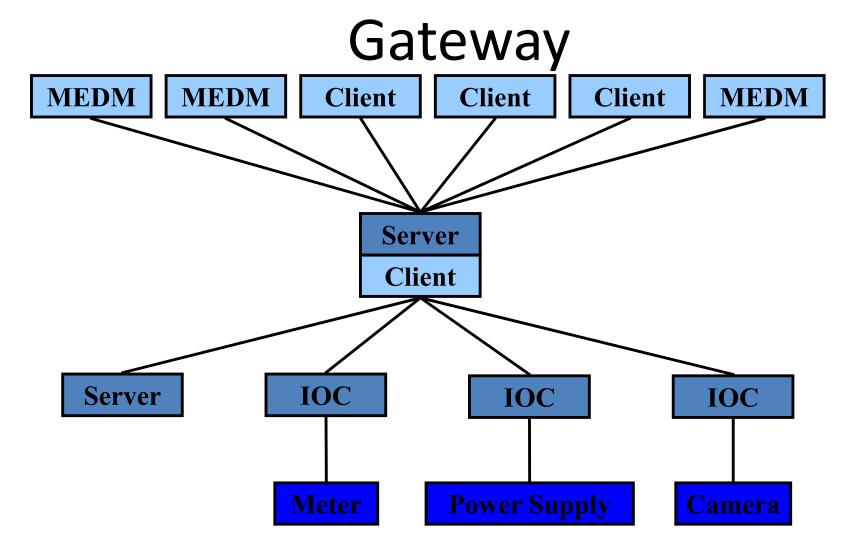
I/O Controller (IOC): Any device (PC, SBC, COM, micro-controller board, FPGA board etc.) able to manage the I/O of the sub-system;

- If National Instruments hw. is used (PC, PXI, CompactRIO, ..) LabView 2009 (or higher) + LabView DSC Module (EPICS I/O Server) are mandatory;

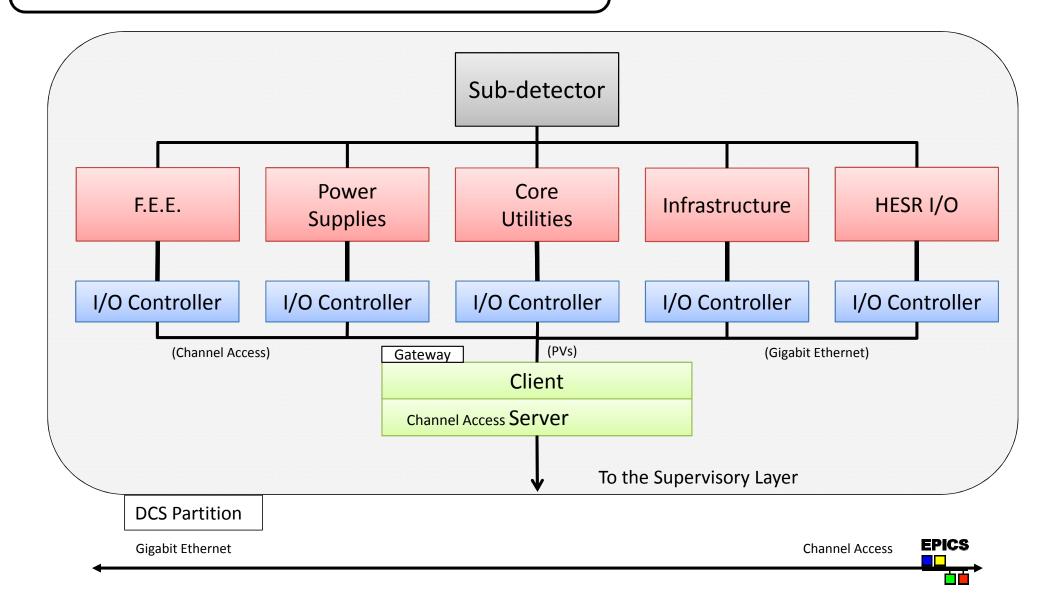
- If > 1 IOC is required we advise the usage of soft IOC running on embedded Linux devices with GbE interface;

Gateway: Linux server with at least 2 NIC, EPICS 3.14 & Gateway 2.0 extension;

- Reduces the load on critical IOCs;
- Provides convenient access from one subnet to another;
- Provides extensive additional access security.



EPICS Overview MEDM MEDM Client Client Client MEDM IOC Server IOC IOC **Power Supply** Meter Camera



PANDA DCS Architecture - Sub-detector


Embedded ARM IOCs

Well-known ARM based devices: Android Smartphone & Tablet, Apple iPhone & iPad, Windows Phone & Tablet;

Operating systems: Android, Apple iOS, Various Linux Distributions, Windows RT;

ARM Development Boards: ARMv6 -> Raspberry Pi , ARMv7 -> Beagle Board, Panda Board (for a more complete list look at <u>http://en.wikipedia.org/wiki/Comparison_of_single-board_computers</u>)

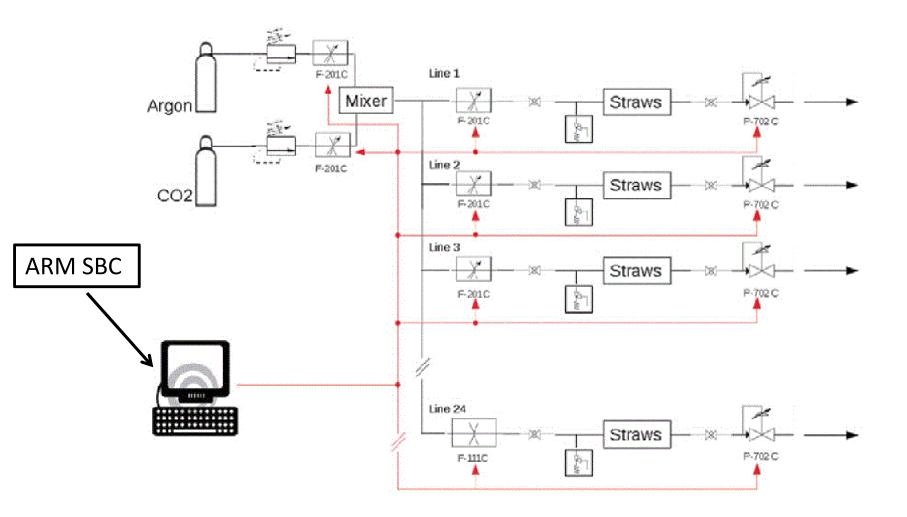
ARM Linux distributions: Ubuntu, Linaro, Archlinux, Angstrom, Raspbian,



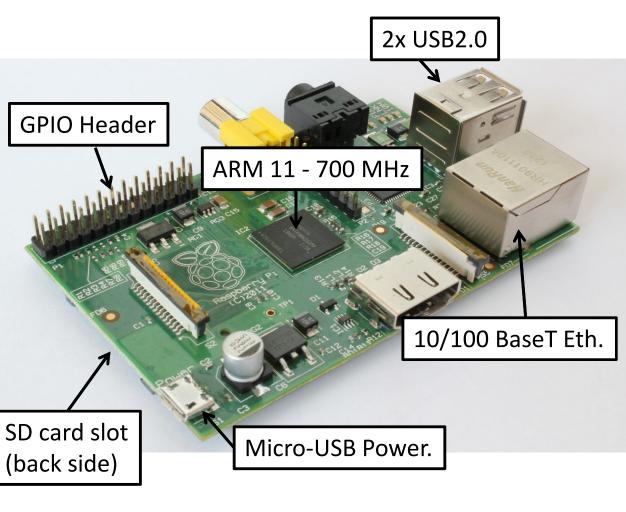
Embedded ARM IOCs

ARM: Acorn RISC Machine

RISC: Reduced Instruction Set Computing -> CPU Design based on the insight that simplified instructions can provide higher performance if this simplicity enables much faster execution of each instruction (source Wikipedia)


Architecture	Family				
ARMv1	ARM1				
ARMv2	ARM2, ARM3				
ARMv3	ARM6, <u>ARM7</u>				
ARMv4	StrongARM, ARM7TDMI, ARM9TDMI				
ARMv5	ARM7EJ, ARM9E, ARM10E, XScale				
ARMv6	<u>ARM11</u>				
ARMv6-M	ARM Cortex-M0, ARM Cortex-M0+, ARM Cortex-M1				
ARMv7	٨٧٦ ARM Cortex-A5, ARM Cortex-A7, ARM Cortex-A8, ARM Cortex-A9, ARM Cortex-A9, ARM Cortex-A7				
ARMv7-M	ARM Cortex-M3, ARM Cortex-M4				
ARMv8-A	ARM Cortex-A53, ARM Cortex-A57				

PANDA STT Gas system

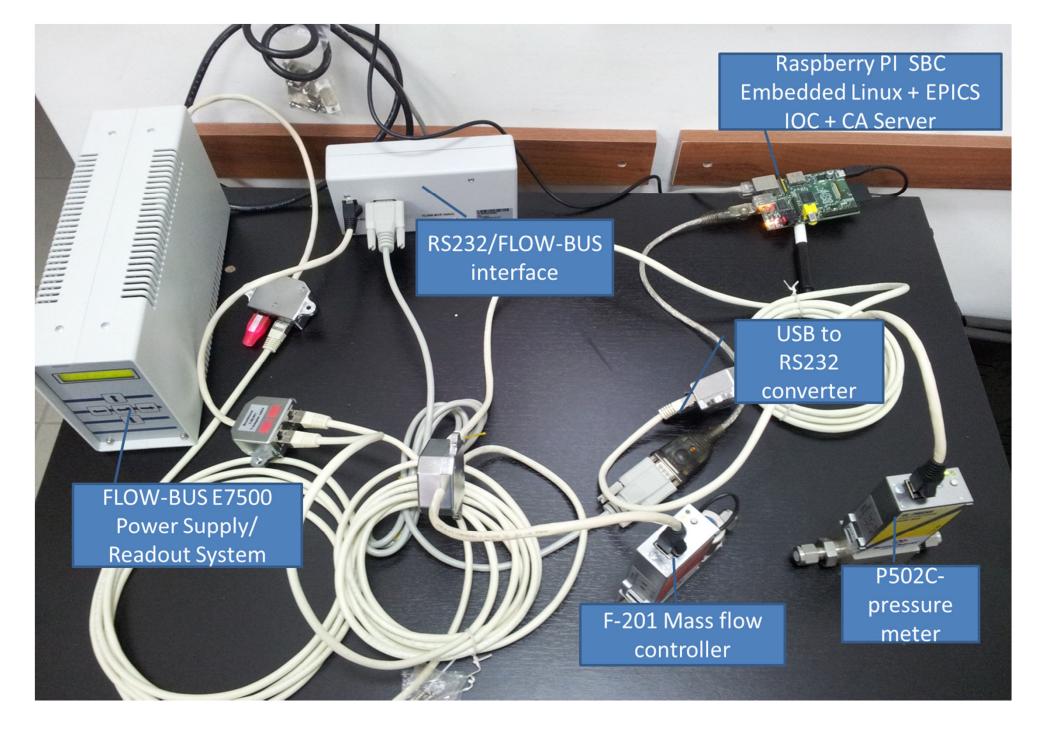

Eur. Phys. J. A (2013) 49: 25

Raspberry PI Single Board Computer as I/O Controller for STT Gas System

Price: about 40 euro Low stocks

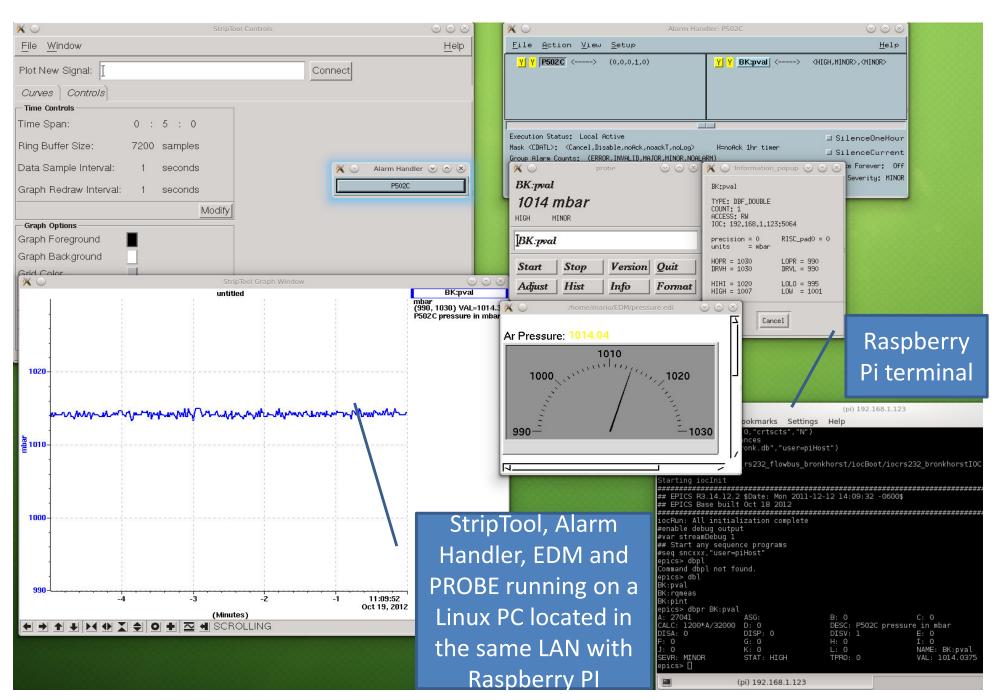
I/O Controller for PANDA STT Gas system

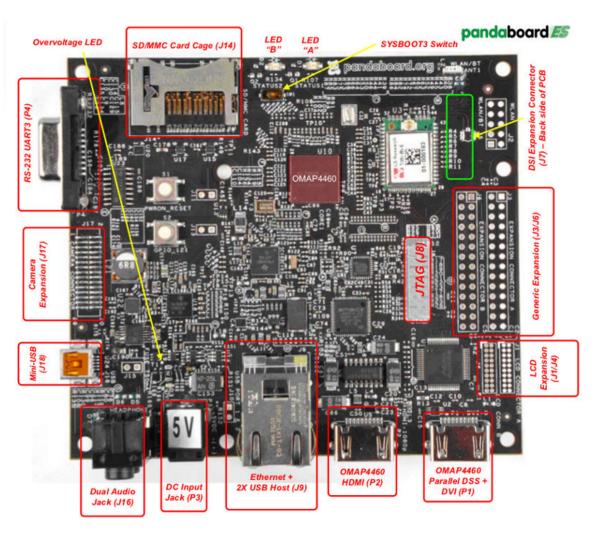
Connected via RS232 to Bronkhorst FLOWBUS

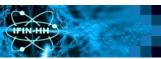

Host: Raspberry Pi Model B SD Card boot: Raspbian OS (based on Debian Linux)

with Epics base 3.14.12.2

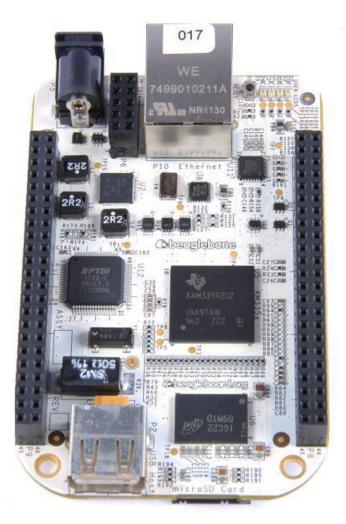
Modules: AsynDriver 4.2 StreamDevice 2.6 Calc 3.0






Linux Ready ARM IOC candidate - PandaBoard ES

PandaBoard ES highlights:


- Dual-core ARM[®] Cortex[™]-A9 MPCore[™] with Symmetric Multiprocessing (SMP) at up to 1.2 GHz each;
- 1 GB low power DDR2 RAM;
- Full size SD/MMC card cage with support for High-Speed & High-Capacity SD cards;
- Onboard 10/100 Ethernet, 802.11 b/g/n Wi-Fi;
- 3x USB 2.0, RS-232, GPIO expansion header;
- Linux support : Ubuntu, Linaro

Price: about 170 euro Large stock

Linux Ready ARM IOC candidate - BeagleBone

Price: about 75 euro Large stock

BeagleBone highlights:

Processor: AM335x 720MHz ARM Cortex-A8 USB client: power, debug and device USB host Ethernet HDMI 2x 46 pin headers Software Compatibility 4GB microSD card w/ Angstrom Distribution Cloud9 IDE on Node.JS w/ BoneScript library

BeagleBone **can be complemented** with cape **plug-in boards** to augment functionality: CANBus Cape, RS232 Cape, RS485 Cape, ProfiBus Cape, etc.

CAN benchmarks on ARM IOC's

IFIN-HH CAN performance test setup:

- PandaBoard ES Linaro based on Ubuntu 12.04 LTS -
- Raspberry Pi Model B- Raspbian or Arch Linux
- BeagleBone Arch Linux _
- **Kvaser USBcan II HS/HS**, Kvaser Linux Driver (V4.82) -
- NI PXI-8464/2 CAN Bus Interface _

IFIN-HH Software development:

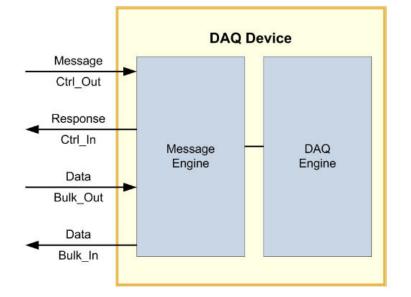
- Patch for the Kvaser Linux driver (the driver has no support for ARM architecture on Linux);
- modified CAN Sender/Receiver based on Kvaser code;
- modified CAN Sender/Receiver for PXI-8464 (LabView)

Producer software tools: KVASER CANKing, NI-CAN Bus Monitor

CAN Performance results

Sender	Receiver	Mean Rcv.	CAN Bus					
		CAN fr/s	Load (%)					
RPi & Kvaser	PXI-8464	3100	45					
PandaBoard ES & Kvaser	PXI-8464	5700	82					
BeagleBone & Kvaser	PXI-8464	5370	77					
Laptop & Kvaser Windows	PXI-8464	5850	84					
Laptop & Kvaser Linux	PXI-8464	6050	87					
PXI-8464	Laptop & Kvaser	4500	65					
PXI-8464	BeagleBone & Kvaser	4400	64					
PXI-8464	PandaBoard ES & Kvaser	4350	63					
PXI-8464	RPi & Kvaser	3050	44					
All tests performed with extended CAN frame Baud Rate 1M								

All tests performed with extended CAN frame, Baud Rate 1N.



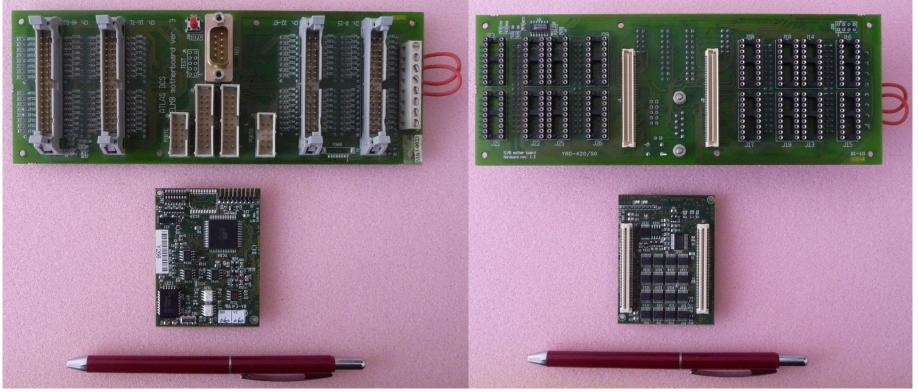
ARM IOC with USB Multifunction DAQ

USB-7204 from Measurement Computing (MCC)

Key Highlights: 8 analog inputs, up to 50 kS/s sampling, 12 bit resolution, 16 digital I/O, 2 – 12 bit analog outputs

MCC Software support: DAQFlex (open-source driver)

- the communication with the DAQ Engine is made through plain text messages (converted into the message engine);


More details will be given in Matei's talk

Evaluation of ATLAS ELMB128

Embedded Local Monitor Board – developed by CERN, NIKHEF, and PNPI for the ATLAS Experiment

Highlights

Hardware: ATmega128 microcontroller, SAE 81C91 CAN Controller, CS5523 – 16bit differential ADC; Ports: 4 x 16 differential AI channels, up to 24 bi-directional DIO lines **Qualified for radiation levels from LHC Used in ATLAS, ALICE, CMS, COMPASS,**

Evaluation of ATLAS ELMB128

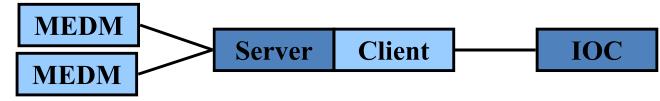
Software support: <u>Henk Boterenbrood</u> (firmware, tools), from NIKHEF, ATLAS DCS (OPC server) ATLAS implementation: **read/write ELMB via CANOpen OPC server into PVSS**

IFIN-HH setup: ELMB128 + Motherboard, NI PXI-8464 CAN, LabView 2009+EPICS I/O Server

🛠 New Project - Server Explorer 2.4.1								
File Servers Edit View Options Help								
🖃 🦉 My Computer	^	Name (Device\Item)	Item ID	Value	^			
		👉 CAN_BUS_1	CAN_BUS_1.DebugFlag	0				
		👉 CAN_BUS_1	CAN_BUS_1.ELMB_3F.EmergencyCounter	1				
NIOPCServers			CAN_BUS_1.ELMB_3F.Error	16				
DPC20CanOpen+	-	👉 CAN_BUS_1	CAN_BUS_1.ELMB_3F.NMT	1				
ELMB128_63		👉 CAN_BUS_1	CAN_BUS_1.ELMB_3F.State	133				
AN_BUS_1.Debugrag		👉 CAN_BUS_1	CAN_BUS_1.ELMB_3F.aiEventTimer	777				
AN BUS 1.ELMB_3F.EnergencyCounter		👉 CAN_BUS_1	CAN_BUS_1.ELMB_3F.aiTransmissionType	777				
CAN_DOS_1.ELMB_31.ELMG		👉 CAN_BUS_1	CAN_BUS_1.ELMB_3F.ai_0	76				
CAN BUS 1.ELMB 3F.State		👉 CAN_BUS_1	CAN_BUS_1.ELMB_3F.ai_1	76				
CAN BUS 1.ELMB 3F.aiEventTimer		👉 CAN_BUS_1	CAN_BUS_1.ELMB_3F.ai_2	XXX				
CAN_BUS_1.ELMB_3F.aiTransmissionType		👉 CAN_BUS_1	CAN_BUS_1.ELMB_3F.ai_3	XXX				
CAN_BUS_1.ELMB_3F.ai_0		👉 CAN_BUS_1	CAN_BUS_1.ELMB_3F.ai_4	XXX				
🚽 🕢 CAN_BUS_1.ELMB_3F.ai_1		👉 CAN_BUS_1	CAN_BUS_1.ELMB_3F.ai_5	XXX				
👉 CAN_BUS_1.ELMB_3F.ai_2		👉 CAN_BUS_1	CAN_BUS_1.ELMB_3F.ai_6	XXX				
🖉 CAN_BUS_1.ELMB_3F.ai_3		👉 CAN_BUS_1	CAN_BUS_1.ELMB_3F.ai_7	XXX				
🖉 CAN_BUS_1.ELMB_3F.ai_4		👉 CAN_BUS_1	CAN_BUS_1.ELMB_3F.ai_8	XXX				
CAN_BUS_1.ELMB_3F.ai_5		👉 CAN_BUS_1	CAN_BUS_1.ELMB_3F.ai_9	XXX				
CAN_BUS_1.ELMB_3F.ai_6		💋 CAN_BUS_1	CAN_BUS_1.ELMB_3F.ai_10	XXX				
CAN_BUS_1.ELMB_3F.ai_7		💋 CAN_BUS_1	CAN_BUS_1.ELMB_3F.ai_11	XXX				
CAN_BUS_1.ELMB_3F.ai_8			CAN BUS 1.ELMB 3F.ai 12	XXX	~			
CAN_BUS_1.ELMB_3F.ai_9	~	<			>			
Ready C:\Program Files\National Instruments\nati.ccdb					11			

Status: connection between PXI-8464 and ELMB128 established via OPC server ; ELMB read/write access from LabView

If other sub-detectors are interested to implement ELMB128 we can offer support


BACKUP SLIDES

What is the Gateway ?

- Both a Channel Access server and a Channel Access client
 - Clients such as MEDM connect to the server side
 - Client side connects to remote servers such as IOCs

- Allows many clients to access a process variable while making only one connection to the remote server
 - Reduces the load on critical IOCs or other servers
- Provides access from one subnet to another
 - For example, from an office subnet to a machine subnet
- Provides extensive additional access security
 - For example, only read access from offices
- Can provide aliases for process variable names