Long-Term Stability and Recalibration Requirements of iseg HV Modules

Tobias Triffterer

Experimentelle Hadronenphysik Ruhr-Universität Bochum

LVIII. PANDA Collaboration Meeting 14th September 2016

High Voltage Supplies for the EMC

- iseg EHS high voltage power supplies foreseen to power VPTTs and APDs within the $\overline{\mathsf{P}}\mathsf{ANDA}\,\mathsf{EMC}$
- Already in use at Proto192 and several teststands at Bochum as well as by other PANDA groups (e.g. Gießen)
- Two different hardware versions in use
 - Distinguishable by number of digits in serial number
 - Old: 6 digits; New: 7 digits
- At Bochum, only "old" modules in use so far

- - Problem came up in teststand for APD units
 - Power supplies do not reach set voltage
 - Set up test application for HV modules:
 - Connect ohmic resistors to half of the channels, leave other ones with open SHV connector
 - Log measured voltage, set voltage and measured current for each channel every second
 - $\bullet\,$ Increase set voltage for all channels every 30 s by $1\,V.$
 - Cover whole set voltage range of HV module (e.g. 0V to 999V for a 1 kV module)
 - Plot difference between measured voltage and set voltage
 - Caveat: HV needs time to react after change of set voltage \implies second curve shifted by $-1\,\mathrm{V}$

Introduction

Issues 0●000 Conclusions & Repairs

Barcodes

Result example: EHS 8 210p-F S/N 720090

Same measurement done twice to check reproducibility: first one red, second one black

Introduction

Issues 00●00 Conclusions & Repairs

Barcodes

Result example: EHS 8 210p-F S/N 720060

Same measurement done twice to check reproducibility: first one red, second one black

Result example: EHS 8 620p-F S/N 740930

2 kV module, not from high precision series, manufactured Dec 2008

Introduction

lssues 0000● Conclusions & Repairs

Barcodes

Result example: EHS 8 220p S/N 780890

Module delivered from Basel a few months ago, never used before, manufactured Jan 2013

Introduction 00	lssues 00000	Conclusions & Repairs ●00	Barcodes 000000
Lessons Lear	ned		

- Modules loose ability to proper voltage regulation over time
- Even if they sit in the wardrobe unused
- Problem seems to grow exponentially
- Voltage measurement not included in regulation logic
- Complete failure of voltage measurement does not raise error in HV firmware
- If operated at $V_{set} < 1 \% V_{max}$, standard precision modules can generate *any* output voltage maximum observed difference 68 V ($V_{set} = 2 V \Rightarrow V_{mom} = 70.0919 V$)

Introduction 00	lssues 00000	Conclusions & Repairs ○●○	Barcodes 000000
Renairing M	odules		

- Three modules sent to iseg to be repaired
- One module had communication issues, bug in iseg driver fixed
- Modules 720060 and 720090 repaired
- Explanation from iseg for regulation issues: "Channel regulation reserve was exhausted."
- Costs for recalibration: 340 \in per module
- Repaired modules not yet returned from iseg
- Modules will be tested again after delivery

Questions to be Discussed

- Are the iseg HV supplies in this form suitable for use at $\overline{P}ANDA?$
- Are the costs for apparently needed regular recalibration and repairs included in the PANDA operation budget?
- How will the logistics for the regular repair of the modules be accomplished?
- How do we ensure proper operation of the teststands and prototypes at our institutes?

PANDA-wide Numbering

- Lots of things to label in $\overline{P}ANDA$:
 - Detector units
 - Cables (power, data, network,...)
 - Sensors (temperature, humidity,...)
 - Crates, ADCs, power supplies
 - Pumps, pipes, valves
- Solution: PANDA-wide numbering scheme for barcodes
- Proposed at the XLVIII. CM and approved by the Technical Board at the XLIX. CM

© by Dennis van Zuijlekom via Flickr,

CC-BY-SA 2.0

Numbering Scheme I

1309123452 subsystem category check digit

- First two digits: Subsystem
 - Assigned $\overline{P}ANDA$ -wide
 - 100 subsystem numbers, but 20 subsystems
 - \Rightarrow Subsystems can have up to 5 numbers if needed
- Category: Identifies class/type of device, cable,...
 - Assigned by each subsystem individually
 - Recommended size 2 digits
 - Each subsystem can make own decision

Issues

Conclusions & Repairs

Barcodes 00●000

Numbering Scheme II

1309123452 subsystem category check digit

- Device number
 - Usually consecutive number
 - Identifies indivdual device, cable, sensor
 - Linked in database to device information
- Total barcode length:
 - Recommendation: 10 digits (\implies 100,000 devices/category)
 - Not fixed, can be decided by each subsystem for each category

List of Subsystem Identifiers

- 01 Pellet Target
- 02 Cluster Jet Target
- 03 Micro Vertex Detector
- 04 Straw Tube Tracker
- 05 Planar GEM Trackers
- 06 Silicon Lambda Disks
- 07 Barrel DIRC
- 08 Barrel Time of Flight
- 09 Forward Tracking
- 10 Endcap Disc DIRC
- 11 Forward RICH
- 12 Forward TOF
- 13 Forward Endcap EMC
- 14 Barrel EMC
- 15 Backward Endcap EMC

- 16 Forward Shashlyk Calorimeter
- 17 Luminosity Detector
- 18 Target Spect. Barrel μ Det.
- 19 Target Spect. Endcap μ Det.
- 20 Muon Filter
- 21 Forward Range System
- 22 Hypernuclear Primary Target
- 23 Hypern. Secondary Act. Target
- 24 Hypern. Germanium Detector
- 25 Solenoid
- 26 Dipole
- 27 Interaction Region
- 28 Infrastructure
- 29 DAQ
 - Computing

30

Introduction	lssues	Conclusions & Repairs	Barcodes
00	00000		0000●0

Barcode Labels

- Type of barcode: 2 of 5 interleaved (2/5i)
- $\bullet\,$ Barcode length: \approx 30 mm for 10 digits, but not fixed
- Standardized checksum algorithm
- Available for purchase from several companies
- Labels resistant against chemicals available
- Manufacturer used by EP1: Servopack (http://www.servopack.de/)
- We paid 1250.20 \in for 4000 FEMC unit labels
- Labels not fallen off since two years
- Self-printed labels also possible (open source software)

Introduction 00	lssues 00000	Conclusions & Repairs	Barcodes 00000●
The End			

Thank you for your attention!