Introduction	Cooling system	DCS	Summary
●0		000000	00

DCS for EMC cooling system

Tobias Triffterer

Experimentelle Hadronenphysik Ruhr-Universität Bochum

LV. PANDA Collaboration Meeting 30th November 2015

 Introduction
 Cooling system
 DCS
 Summary

 o●
 000
 000000
 00

Purpose of the Cooling System Prototype

- Cooling system intended to be used for testing of the Forward Endcap EMC at RUB and FZ Jülich
- Capable of cooling the complete endcap and one barrel slice
- Cooling system for the complete EMC: Scaled-up version of this system (if everything works as intended)
- Work sharing:
 - Hardware designed and built by IN2P3 Orsay
 - Control software created by EP1 Bochum
 - Chiller and heat exchanger bought from French company Eurodifroid
- Total value: \approx 52,000 \in (mostly paid by Gießen)

Introduction 00	Cooling system ●00	DCS 000000	Summary 00
Technical Data			

- Power of cooling compressor: 5 kW
- Power of main pump: 1.5 kW
- Underpressure system
- Two circuits connected to chiller:
 - Primary circuit: Coolant flowing through calorimeter
 - Secondary circuit: Transports heat from cooling compressor to facility heat exchanger (Alternative: Direct connection to cooling water supply of experiment hall)
- Cooling agent primary circuit: Methanol-water mixture
- Operating temperature: -32 °C
- Reservoir of pprox 330 L
- Cooling agent secondary circuit: Water

	Cooling system ○●○	DCS 000000	Summary 00

Schematic Diagram

Introduction	Cooling system	DCS	Summary
00	00●	000000	00

Panorama Photo of the Setup

Introduction 00	Cooling system	DCS ●00000	Summary 00
$C \rightarrow 1 C \rightarrow 1$			

Control System

- Raspberry Pi in switchboard
- Relais connected to its GPIOs
- USB-RS485 adapters connected to USB
- Control of pump, flow meter, chiller
- EPICS (DCS software) running on Raspberry Pi
- Connection to rest of DCS via network

Introduction 00	Cooling system	DCS 0●0000	Summary 00
Accessing the CDI	\bigcirc		
Accessing the GPI	US		

- GPIOs controllable via sysfs (Linux pseudo filesystem): /sys/class/gpio
- Directory gpioN ($N \in \mathbb{N}$) for each pin
- Files like value, direction, active_low and others to control behaviour of the GPIO pin
- EPICS device support that reads from/writes to these files
- Used with bo and bi records
- Extended and ported to BeagleBone Black by Florian Feldbauer

Introduction	Cooling system	DCS	Summary
00		००●०००	00
Use of the GPIOs			

- Use of output GPIOs: Relais and signals
 - Power switch of pump
 - Run switch of pump
 - Switch pump speed mode
 - Power switch of heater
 - Power switch of flowmeter
- Use in input GPIOs: Status of chiller
 - Compressor failure
 - Flow too low
 - Pressure too low

• ...

- \Rightarrow Generic tool to control various types of equipment
 - Code available on GitHub
 - https://github.com/ffeldbauer/epics-devgpio

Introduction 00	Cooling system	DCS 000●00	Summary 00
Machine Pro	tection		

- All important safety precautions hard-wired
- \Rightarrow Protection will also work if EPICS has crashed or is not running
 - Any problem will cause immediate shutdown of chiller
 - EPICS nevertheless important part of the system
 - EPICS will learn about the problem via input GPIO and inform staff via alarm system
 - Pump and flowmeter part of safety system
 - Pump stop or flow $< 7 \frac{L}{min}$ will stop chiller and heater

Introduction 00	Cooling system	DCS 0000●0	Summary 00
ModBus Ove	rview		

- Generic protocol used by devices from many manufacturers
- Operate different devices on one bus
- Usable on RS-232, RS-485 and Ethernet
- Device address: One byte (255 devices max.)
- Common functions (simplified):
 - Read/write single bit (switch, status flag)
 - Read/write register (arbitrary number in 16-bit blocks)
 - Reading/writing several bits/registers at once also possible
 - Bits/registers selected by 16-bit address
- Transmission error detection via CRC

Introduction 00	Cooling system	DCS 00000●	Summary 00
ModBus & EP	ICS		

- Devices read out and controlled via ModBus:
 - Primary circuit pump
 - Flowmeter
 - Chiller
- EPICS support for ModBus written by Mark Rivers: http://cars9.uchicago.edu/software/epics/ modbus.html
- IOC support and tools available in Florian's repository
- Comprehensive documentation available on website
- Creating IOC configuration straightforward

Introduction 00	Cooling system	DCS 000000	Summary ●○
Summary &	Outlook		

- Cooling system control via Raspberry Pi works
- EPICS device support for using GPIOs implemented
- Generic tool to control any type of equipment
- Cooling system will be connected to EP1 alarm system in January 2016
- Cooling whole endcap calorimeter will be tested once insulation has been manufactured and delivered

Introduction 00	Cooling system	DCS 000000	Summary ⊙●
The End			

Thank you for your attention!

