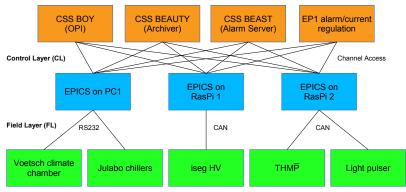
Introduction ●00	DCS status of FEMC	Slow Control Devices	Future plans

FEMC DCS status and available devices for $$\overline{\mbox{P}}$$ ANDA Slow Control

Tobias Triffterer

Experimentelle Hadronenphysik Ruhr-Universität Bochum

XLIX. PANDA Collaboration Meeting 10th June 2014


Slow Control for Forward Endcap calorimeter

- Slow Control for FEMC developed by Bochum group
- Entirely based on EPICS and CSS
- Controlled devices at prototype "Proto192":
 - iseg high voltage power supplies
 - THM \overline{P} s and light pulser (\Rightarrow second part)
 - Julabo chillers
 - VME crate
 - Voetsch climate chamber
 - Wiener low voltage power supply tested
- \bullet Self-developed drivers to operate devices with EPICS (\Rightarrow second part)
- Additional software coupled to EPICS using the Channel Access protocol (⇒ more on that later)

Slow Control Devices

FEMC/Proto192 DCS structure

Supervisory Layer (SL)

4/16

What happened since last DCS session? (1)

- New CAN controller based on Raspberry Pi rolled out
- Kernel driver for CAN interface tested
- EPICS drivers for hardware support debugged and in use
- \bullet Aluminium casings for RasPi/CAN and THMP

What happened since last DCS session? (2)

- Created "virtual Proto192" (dummy IOC) for testing new Slow Control software
- Abstraction API for EPICS Channel Access to faciliate the development of e.g. APD screening programs

HV current and alarm border regulation

- Stand-alone C++ application
- Communicating with EPICS using Channel Access
- Software calculates and sets alarm borders according to current operational conditions
- HV current limits adapted to channels status (stable/ramping)
- Plan presented on XLV. Collaboration Meeting
- Used in production at Proto192 since 10 months

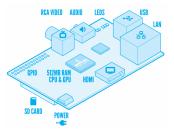
DCS status of FEMC	Slow Control Devices	Future plans

Generic Slow Control devices

- Standardization makes managing a large experiment with many participating groups easier
- Make devices and software developed for forward endcap EMC available to other groups
 - Avoid duplicated effort
 - Save money and time
 - Share experience
 - Reduce maintenance expenses
- Prime examples
 - Raspberry Pi with CAN bus interface
 - Temperature and Humidity Monitoring Board for PANDA (THMP)
- Close cooperation between Bochum and Mainz groups

Introduction

DCS status of FEMC


Slow Control Devices

Future plans

Raspberry Pi (Model B) [Control Layer]

- Credit-card-sized single-board computer
- Powered by BCM2835 SoC
- ARMv6 CPU (800 MHz)
- 512 MB RAM
- Fast Ethernet NIC
- 2x USB 2.0
- HDMI and Composite monitor link
- SD card takes role of hard disk
- Supplied by Micro-USB (mobile phone charger)
- GPIO connectors

Introduction

DCS status of FEMC

Slow Control Devices

Future plans

CAN adapter PCB for Raspberry Pi [CL]

- Connected to GPIO
- SJA1000 stand-alone CAN controller
- CAN bus chosen as standard bus for PANDA
- Galvanic insulation of CAN bus (optocoupler)
- Data throughput: $\sim 1000 \, \frac{\text{CAN frames}}{\text{s}}$ at baud rate $125 \, \frac{\text{kbir}}{\text{s}}$
- Aluminium casing for shielding

Available from Bochum group at net cost price plus shipping to your institute

Write to: tobias@ep1.rub.de

Introduction

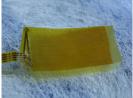
DCS status of FEMC 000

Slow Control Devices

Future plans

Temperature and Humidity Monitoring [Field Layer]

- Close monitoring of environmental conditions (temperature, humidity, pressure) necessary
- Temperature and Humidity Monitoring Board for $\overline{P}ANDA \Rightarrow THM\overline{P}$
- Modular design: Mainboard with 8 slots for piggyback boards
- Maxim 14bit ADC
- Sophisticated filtering for cancelling out noise
- CAN readout


Slow Control Devices

Future plans

Temperature Piggyback Board [FL]

- Temperature measured by change of resistance of platinum
- Four-wire measurement
- Piggyback board drives a current of 1 mA
- Voltage drop over resistor (Pt100) is measured through separate wires
- Very precise measurement
- Independent of cable length
- Range $-50\,^{\circ}\text{C}$ to $+50\,^{\circ}\text{C}$
- Resolution < 0.05 K

Other Piggyback Boards [FL]

- Humidity (HIH-4000) and pressure (MPX4115A)
 - Same four-wire cables as for temperature sensors
 - One wire to power the sensor
 - One wire for readout
 - Two wires common ground
 - Sensor response fed to ADC
- Generic interface for new PBB types:
 - New types of PBB without changes to the mainboard
 - PBBs can provide up to 4 V to the ADC
 - Two-wire interface (I²C) for direct communication with the μC \Rightarrow may need firmware extension

Software and Drivers [SL/CL/FL]

- Drivers for Raspberry Pi CAN interface licensed under GPL
- Available on Florian Feldbauer's GitHub repository: https://github.com/ffeldbauer/epics_RPi_can
- Other software available in EP1 git repository:
 - THMP firmware
 - THM \overline{P} test/debug application
 - $\bullet~\mathsf{THM}\overline{\mathsf{P}}$ calibration data
 - API to control iseg HV supplies (and others) via EPICS
 - Alarm and current border regulation software
 - EPICS databases and protocol files
- For access, write to: tobias@ep1.rub.de
- PANDA-specific version of CSS

000	000	0000000	00
Costs			

• Net cost prices for parts of aforementioned devices:

Raspberry Pi with EPICS on SD card	44.04 €
Raspberry Pi CAN adapter PCB	136.41 €
Aluminium casing	12.12 €
THMP mainboard	342.08 €
Aluminium casing	17.66 €
Temperature PBB	110.12 €
Pressure/humidity PBB	25.01 €
THMP power cable (2 m)	11.93 €
CAN bus cable (1 m)	10.56 €
CAN bus terminator	3.72 €

Slow Control Devices

Our agenda for the next months

- Finish hardware design for second generation light pulser
- Modify firmware to store calibration on pulser itself
- Adapt EPICS drivers to new light pulser communication protocol
- Next beam test with Proto192 scheduled in July
- \Rightarrow First test of alarm handling under beam conditions
 - E-mail alerts if an alarm occurs and nobody is in the lab

Introduction 000	DCS status of FEMC	Slow Control Devices	Future plans ○●
Summary			

- RasPi/CAN interface ready for production use
- Slow Control chain with EPICS and CSS built and tested at "Proto192" forward endcap calorimeter prototype
- Devices developed available to all $\overline{\mathsf{P}}\mathsf{ANDA}$ groups

Thank you for your attention!