Introduction	Devices & Setup	CSS	Recent developments
●0	00000	0000	

Detector control system for the EMC

Tobias Triffterer

Experimentelle Hadronenphysik Ruhr-Universität Bochum

XLV. PANDA Collaboration Meeting 25th June 2013

PANDA slow control standards

- CAN bus should be used for all slow control devices
- \bullet Chosen as bus system for $\overline{\mathsf{P}}\mathsf{ANDA}$ DCS
- Two-wire data bus (differential signaling), data rate up to 1 Mbps
- Most devices of the EMC DCS use CAN bus
- Drivers read out CAN devices and feed the data to EPICS
- EPICS distributes the data to operator interfaces, alarm systems, archive engines, etc.

	Devices & Setup	CSS				
00	●0000	0000				

RaspberryPi CAN Readout

- Developed by Florian Feldbauer in Bochum and Mainz
- Based on RaspberryPi credit-card sized computer and custom adapter PCB for CAN bus
- One device in laboratory use in Bochum for several months
- More RasPi CAN interfaces currently rolled out
- EPICS drivers for iseg HV successfully tested
- Drivers for other components will be tested in the next weeks

	Devices & Setup	CSS	Recent developments
00	0000	0000	000000000

Temperature and Humidity Monitoring

- Temperature and Humidity Monitoring Board for $\overline{P}ANDA$
- Developed by Florian Feldbauer, Patrick Friedel, and Mario Fink at RUB during their Master/Diploma studies
- Lightweight solution to monitor environmental conditions:
 - Temperature (high precision)
 - Humidity
 - Air pressure
 - Flux in cooling tube
- Mountable close to/in the detector
- Generation 1 in use at Proto192 (FEMC) for > 3 years
- Gained lots of experience in these years
- Redesigned for final use in $\overline{P}ANDA EMC \Rightarrow$ Generation 2
- Distribution to other groups when new RasPI CAN PCBs available

	Devices & Setup 00●00	CSS 0000	Recent develop	Recent developments			

The mainboard

- Powered by AT90CAN128 μC (16 MHz)
- Connected via CAN bus
- Modular design:
 - Connectors for 8 piggyback boards (PBB)
 - Various types of PBBs for different tasks
- 8 channels per PBB \Rightarrow 64 channels per THM \overline{P}
- 14 bit ADC (Maxim MAX1148)
- Channels multiplexed to ADC
- Low power consumption (< 3 W)

	Devices & Setup	CSS	Recent developments
00		0000	000000000

Temperature Piggyback Board

- Temperature measured by change of resistance of platinum
- Four-wire measurement
- Piggyback board drives a current of 1 mA
- Voltage drop over resistor (Pt100) is measured through separate wires
- Very precise measurement
- Independent of cable length
- Range $-50\,^{\circ}\text{C}$ to $+50\,^{\circ}\text{C}$
- Resolution < 0.05 K

Introduction	Devices & Setup	CSS	Recent developments
00	0000●	0000	

Other Piggyback Boards

- Humidity (HIH-4000) and pressure (MPX4115A)
 - Same four-wire cables as temperature sensors
 - One wire to power the sensor
 - One wire for readout
 - Two wires common ground
 - Sensor response fed to ADC
- I/O board (planned):
 - Generic communication interface for e.g. relays, end-point switches, safety loops etc.
 - Remote-controllable using the CAN bus of the $\mathsf{THM}\overline{\mathsf{P}}$
- Generic interface for new PBB types:
 - New types of PBB without changes to the mainboard
 - PBBs can provide up to 4 V to the ADC
 - Two-wire interface (I²C) for direct communication with the μC \Rightarrow may need firmware extension

Introduction	Devices & Setup	CSS	Recent developments				
00	00000	●000					

Control System Studio

- Developed by DESY, SNS, BNL and others
- Based on Eclipse Indigo RCP
- Three main applications:
 - GUI with operator interfaces
 - Archive Engine
 - Alarm Server
- Communicates with EPICS via network (Channel Access)

Introduction	Devices & Setup	CSS	Recent developments
00	00000	0●00	

Operator Interfaces

3 💿						CSS	<@endcap01>					
File Edit	CSS Window	Help										
	🗃 📕 📓 j	💟 🔤 🖓	~ (i) ×] 🕻	1	00%	~ ◊	~ \$~					
et 🗾 o	PI Runtime											
🚝 Main	🚝 Cooling	🚝 Power Supply	🛯 🔀 VM	E Crate 🛛 🔏	Light Pulser	🚝 Power Su	pply Control					- a
			Cont		TO192	Bowo	Cupply	,				
			Cont	IUIPRO	10192 -	Fower	Suppry					
HV for	r Photo D	etectors						HV Co	ntrol Pa	nel <mark>EM</mark> I	ERGENCY OFF	
Module 0	5	25,71 degC	Module 1	5	26,14 degC	Module 2	s s	26,01 degC	Module 3	s	26,00 degC	
	Vmom	Imom		Vmom	Imom		Vmom	Imom		Vmom	Imom	
Ch0 🔴	185,0 V	0,0274 uA	Ch0 😑	185,0 V	0,0018 uA	Ch0 😑	185,0 V	0,0025 uA	Ch0 😑	185,0 V	0,0016 uA	
Ch1 😑	22,2 V	7.969,1140 uA	Ch1 😑	185,1 V	0,0017 uA	Ch1 🔴	184,9 V	0,0019 uA	Ch1 😑	185,0 V	0,0019 uA	
Ch2 😑	185,0 V	0,0008 uA	Ch2 😑	185,0 V	0,0023 uA	Ch2 😑	184,9 V	0,0011 uA	Ch2 😑	185,1 V	0,0017 uA	
Ch3 😑	185,0 V	0,0018 uA	Ch3 😑	184,9 V	0,0011 uA	Ch3 😑	184,9 V	0,0010 uA	Ch3 😑	185,0 V	0,0015 uA	
Ch4 🔴	185,0 V	0,0011 uA	Ch4 😑	185,1 V	0,0004 uA	Ch4 😑	184,9 V	-0,0004 uA	Ch4 😑	185,0 V	0,0009 uA	
Ch5 🔴	185,0 V	0,0010 uA	Ch5 😑	185,0 V	0,0012 uA	Ch5 😑	185,0 V	0,0001 uA	Ch5 😑	185,0 V	0,0003 uA	
Ch6 😑	185,0 V	0,0013 uA	Ch6 😑	185,0 V	0,0005 uA	Ch6 😑	184,9 V	0,0010 uA	Ch6 😑	185,0 V	0,0007 uA	
Ch7 😑	184,9 V	0,0014 uA	Ch7 😑	185,0 V	0,0007 uA	Ch7 😑	185,0 V	0,0007 uA	Ch7 😑	185,0 V	0,0010 uA	
Module 4	<u> </u>	28,89 degC	Module 5	<mark> s</mark>	26,60 degC	Module 6	<u>s</u>	27,39 degC	Module 7	<mark>-</mark> s	28,77 degC	
	Vmom	Imom		Vmom	Imom		Vmom	Imom		Vmom	Imom	
Ch0 🔴	190,0 V	0,0018 uA	Ch0 😑	1.200,0 V	43,2016 uA	Ch0 😑	1.000,0 V	134,2953 uA	Ch0 😑	1.000,0 V	67,3239 uA	
Ch1 🔴	190,0 V	Au 6000,0	Ch1 😑	1.200,0 V	100,3461 uA	Ch1 🔴	1.000,0 V	94,2694 uA	Ch1 🔴	1.000,0 V	67,1514 uA	
Ch2 😑	189,9 V	0,0010 uA	Ch2 😑	1.200,0 V	100,2382 UA	Ch2 😑	1.000,0 V	93,8586 uA	Ch2 😑	1.000,0 V	67,0117 uA	
Ch3 🔴	190,0 V	0,0010 uA	Ch3 😑	1.200,0 V	100,4239 uA	Ch3 🔴	1.000,0 V	94,0325 uA	Ch3 😑	1.000,0 V	67,0258 uA	
Ch4 🔴	189,9 V	0,0009 uA	Ch4 😑	1.200,0 V	24,8961 uA	Ch4 🔴	1.000,0 V	133,4312 uA	Ch4 🔴	0,0 V	0,0000 uA	
Ch5 🔴	190,0 V	0,0001 uA	Ch5 😑	1.200,0 V	75,2471 uA	Ch5 😑	1.000,0 V	134,1342 uA	Ch5 🔴	0,3 V	0,0000 uA	
Ch6 🔴	190,1 V	0,0015 uA	Ch6 😑	1.200,0 V	100,2353 uA	Ch6 😑	1.000,0 V	134,6660 uA	Ch6 🔴	0,1 V	0,0000 uA	
Ch7 😑	190,0 V	0,0018 uA	Ch7 😑	1.200,0 V	0,0003 uA	Ch7 🔴	1.000,0 V	133,9891 uA	Ch7 🔴	0,2 V	0,0000 uA	
0*												Not logged i

Tobias Triffterer (RUB EP1) DCS for the forward

Introduction 00	Devices & Setup 00000	CSS 00●0	Recent developments
Archive Eng	ine		

- Background process
- Writes current data into database

Tobias Triffterer (RUB EP1)

• Data browser in CSS GUI to view data from archive

DCS for the forward

Introduction	Devices & Se 00000	etup CSS	Recent developments

Alarm Server

- Background process
- Monitores EPICS data for violation of alarm borders
- Notifies CSS GUIs and can take further action (e-mail etc.)
- Several GUIs in CSS to display alarm states

H	Ali	arm Tr	ee 🛙										
				р	roto192	2~	0	(i)	莎		× .	£	1
Þ	۲	Area:	Thin P	Ts									
Þ	٠	Area:	Front	hull									
⊳	٠	Area:	Backp	late									
Þ	٠	Area:	Other	coolir	ng								
Þ	٠	Area:	Humio	lity									
Þ	۲	Area:	Press	ure									
⊳	۲	Area:	Flow										
~	٠	Area:	HV vo	Itages	(MAJO	R/HI	H_AL	ARM	4)				
		C PV	epics	://PAN	IDA:FEI	MC:H	V:0:0):0:\	(moi	m (M	1AJOI	R/H	IHI_A
		😑 PV:	epics	://PAN	IDA:FEI	NC:H	V:0:0):1:\	(moi	n			
		😑 PV:	epics	://PAN	IDA:FEI	MC:H	V:0:0):2:\	/moi	m			
		C PV	epics	://PAN	IDA:FEI	MC: H	V:0:0):3:\	/moi	m (№	1INO	R/H	IIGH_
		😑 PV:	epics	://PAN	IDA:FEI	NC:H	V:0:0):4:\	mo	n			
		😑 PV:	epics	://PAN	IDA:FEI	NC:H	V:0:0):5:\	/mo	m			
		PV:	epics	://PAN	IDA:FEI	NC:H	V:0:0):6:\	/mo	m			
		😑 PV:	epics	://PAN	IDA:FEI	NC:H	V:0:0):7:\	(moi	n			
		😑 PV:	epics	://PAN	IDA:FEI	MC:H	V:0:1	.:0:\	mo	m			
		e PV:	epics	://PAN	IDA:FEI	MC:H	V:0:1	.:1:\	mo	m			
		😑 PV:	epics	://PAN	IDA:FEI	NC:H	V:0:1	.:2:\	(moi	m			

EPICS alarm borders

- Two upper (called "HIGH" and "HIHI") und two lower borders (called "LOW" and "LOLO") for each value in EPICS
- Each border can be
 - "No Alarm"
 - "Minor Alarm"
 - "Major Alarm"
- Alarm borders are plain double values, no relations etc. possible
- $\implies {\sf Write application to read data from} \\ {\sf EPICS and set alarm borders}$

Introduction	Devices & Setup	CSS	Recent developments
00	00000	0000	0●00000000

New EPICS alarm software from Bochum

- Sets alarm borders for HV and temperature and current limits
- Three modes of operation:
 - Maintenance
 - Laboratory
 - Beamtime
- Data sources:
 - HV: Module type, detector type and current set voltage for HV
 - Temperature: Maximum and minimum chiller bath temperature within the last eight hours
- Built to be reusable by other groups

- Maximum set voltage: Hardware limit of module
- Voltage HIGH limit: No limit
- Voltage HIHI limit: No limit
- Voltage LOW limit: No limit
- Voltage LOLO limit: No limit
- Temperature HIGH limit: No limit
- Temperature HIHI limit: No limit
- Temperature LOW limit: No limit
- Temperature LOLO limit: No limit

- Maximum set voltage: 450 V for APDs, 1205 V for VPTTs
- Voltage HIGH limit: V_{max}
- Voltage HIHI limit: $V_{max} + 5 V$
- Voltage LOW limit: No limit
- Voltage LOLO limit: No limit
- Temperature HIGH limit: $T_{max} + 2 \degree C$
- Temperature HIHI limit: $T_{max} + 3.5 \,^{\circ}\text{C}$
- Temperature LOW limit: $T_{min} 2 \degree C$
- Temperature LOLO limit: $T_{min} 3.5 \,^{\circ}\text{C}$

- Maximum set voltage: 450 V for APDs, 1205 V for VPTTs
- Voltage HIGH limit: $V_{set} + 0.3 \text{ V}$
- Voltage HIHI limit: $V_{set} + 0.8 \text{ V}$
- Voltage LOW limit: $V_{set} 0.3 \text{ V}$
- Voltage LOLO limit: $V_{set} 0.8 \text{ V}$
- Temperature HIGH limit: $T_{max} + 2 \degree C$
- Temperature HIHI limit: $T_{max} + 3.5 \,^{\circ}\text{C}$
- Temperature LOW limit: $T_{min} 2^{\circ}C$
- Temperature LOLO limit: $T_{min} 3.5 \,^{\circ}\text{C}$

Introduction 00	Devices & Setup	CSS 0000	Recent developments 00000●0000
Current limits			

- APD channels drain far more current while ramping
- Implementation based on the state machine concept
- Three states:
 - Stable
 - Ramping
 - Off
- $\bullet\,$ Channel off if crate off and $\,V_{\rm mom} < 1$ V
- Channel goes to ramping if $|V_{mom} V_{set}| > 2 V$ or $|V_{set,new} V_{set,old}| > 2 V$
- $\bullet\,$ Channel goes to stable if $|\textit{V}_{mom}-\textit{V}_{set}| \leq 0.5$ V
- Current limits:
 - APDs: Stable 100 μ A, ramping 200 μ A
 - VPTTs: Stable 250 μ A, ramping 300 μ A

Introduction	Devices & Setup	CSS	Recent developments
00	00000	0000	

Configurability

- All numbers on the previous slides configurable
- Daemon reacts on config file changes and updates alarm borders

Application Structure

- Singleton class handling global EPICS resources (EpicsAccessManager)
- Common base class encapsulating all EPICS API calls (EpicsPVbase)
- Classes derived from EpicsPVbase for specific device types, e.g. EpicsHvModule
- Read and change every value, alarm border or severity
- Subscription to any value possible
- Classes for HV control can also be used in applications not dealing with alarm borders but requiring to control the HV

- $\bullet~\text{THM}\overline{\text{P}}$ and EPICS/CSS DCS infrastructure already used by
 - Backward endcap group (Mainz)
 - Proto120 barrel prototype
 - Luminosity detector (Mainz)
 - Fordward endcap tests in Bonn
 - EMC tests at KVI (Groningen)
- Toolchain ready to be used by other detector groups
- Final version of the THM \overline{P} available for the final endcap
- Software available in EP1 git repository (ask for access)
- If you have questions: Write me an e-mail
- \implies tobias@ep1.rub.de

Introduction 00	Devices & Setup 00000	CSS 0000	Recent developments 000000000●
The End			

Thank you for your attention!