
January 1995

1

EZCA Primer

Nicholas T. Karonis
Argonne National Laboratory
Advanced Photon Source
Accelerator Systems Division
Controls Group

1 Introduction

This document provides a quick introduction to EZCA, a library that was designed to provide
an easy to use interface to Channel Access (CA). As such, this document isnot a user’s
manual, where a more detailed explanation of EZCA can be found. In short, this document is
designed to get users to a state where they can be writing EZCA code as quickly as possible. It
is not a document that answers all EZCA questions.

2 Getting Started

Below is an example of a program,usr1.c, that uses EZCA.

usr1.c /* following needed when using EZCA */
#include <tsDefs.h>
#include <cadef.h>
#include <ezca.h>

main()
{
double d;
short s[2];

s[0] = 10; s[1] = -21;
ezcaPut (“mywaveform”, ezcaShort, 2, s);

ezcaGet (“mygenerator”, ezcaDouble, 1, &d);
} /* end main() */

First note the three include filesnecessary for all EZCA programs. The first two,tsDefs.h and
cadef.h, are EPICS include files. The last,ezca.h, is a new EPICS include file. The files must
appear in the same order as they appear above.

2 Getting Started

2 EZCA Primer

Our first call is toezcaPut. The first argument specifies the process variable we wish to write
to, mywaveform. The next two arguments state that we are supplying the data as C short
variables and that there are 2 of them. The last argument is a pointer to the data.

Our last call is toezcaGet. We are retrieving a scalar from the process variablemygenerator
in the form of a C double and are placing it into the variabled.

2.1 Data Types EZCA allows the user to read/write information in a number of different formats. In the
example above we wrote data supplied asezcaShort and requested the data in our read as an
ezcaDouble. Here are the allowable EZCA data types.

• ezcaByte
• ezcaString
• ezcaShort
• ezcaLong
• ezcaFloat
• ezcaDouble

2.2 Makefile Below is themakefile used to make the example programusr1.c.

makefile CC = acc

EPICSDIR = /home/opiinj2/epics
EPICS_ADD_ON_DIR = $(EPICSDIR)/add_on

EZCAINCDIR = -I$(EPICS_ADD_ON_DIR)/include
EPICSINCDIR = -I$(EPICSDIR)/R3.11.6/share/epicsH
INCLUDEDIRS = $(EZCAINCDIR) $(EPICSINCDIR)

EZCALIBDIR = $(EPICS_ADD_ON)/lib
EZCALIB = -lezca

CALIBDIR = $(EPICSDIR)/R3.11.6/Unix/sun4/bin
CALIBS = -lca -lCom -lUnix

LIBDIRS = -L$(CALIBDIR) -L$(EZCALIBDIR)
LIBS = $(EZCALIB) $(CALIBS)

CFLAGS = -c
DEFINES = -DUNIX -USUN4 -DOLDCA

usr1: usr1.o
$(CC) -o usr1 usr1.o $(LIBDIRS) $(LIBS)

clean:
/bin/rm -f *.o usr1

.c.o:$*.c
$(CC) $(CFLAGS) $(INCLUDEDIRS) $(DEFINES) $*.c

3 Main Functions

EZCA Primer 3

3 Main Functions

EZCA is a library of composed of 25 or so functions. Some of the functions deal with error
handling, grouping, monitors, and tuning EZCA. All of the functions are described in this
document.

In this section we introduce the main work functions in EZCA, the functions that read/write
data. There are 8 functions that read data all starting withezcaGet and one function to write
data,ezcaPut.

• int ezcaGet(char *pvname, char ezcatype, int nelem, void *data_buff)

This is the fundamental retrieval function in EZCA. The process variable is named inpvname
and the request type is specified as an EZCA data type inezcatype. The requested number of
elements is specified innelem. data_buff is a user-supplied buffer that must be large enough
to storenelem data values of typeezcatype. ezcaGet places the value into that buffer.

• int ezcaGetControlLimits(char *pvname, double *low, double *high)
• int ezcaGetGraphicLimits(char *pvname, double *low, double *high)
• int ezcaGetNelem(char *pvname, int *nelem)
• int ezcaGetPrecision(char *pvname, short *precision)
• int ezcaGetStatus(char *pvname, TS_STAMP *timestamp, short *status,

short *severity)
• int ezcaGetUnits(char *pvname, char *units)

These functions all retrieve informationabout EPICS database records rather than their values.
The process variable is named inpvname. All other fields are user-supplied buffers that EZCA
fills.

TS_STAMP is an EPICS type (found intsDefs.h). It reflects the last time the record was
processed. There is an EPICS library to manipulate this data type.

In ezcaGetUnits the character arrayunits must be at leastEZCA_UNITS_SIZE (defined in
ezca.h) big.

• int ezcaGetWithStatus(char *pvname, char ezcatype, int nelem, void *data_buff,
TS_STAMP *timestamp, short *status, short *severity)

This is nothing more than anezcaGet and anezcaGetStatus wrapped up into one function.

• int ezcaPut(char *pvname, char ezcatype, int nelem, void *data_buff)

This is the write function in EZCA. The process variable is named inpvname. The type and
amount of supplied data are specified inezcatype andnelem, respectively. The data is in the
user-supplied bufferdata_buff, which is immediately ready for re-use upon return of the
function.

4 Error Handling

4.1 Return Codes EZCA functions return status codes indicating the success/failure of the call. In EZCA a return
of 0 (EZCA_OK) always means success. Anything else indicates a problem. Following are
the return codes EZCA uses.

4 Error Handling

4 EZCA Primer

• EZCA_OK
• EZCA_INVALIDARG
• EZCA_FAILEDMALLOC
• EZCA_CAFAILURE
• EZCA_UDFREQ
• EZCA_NOTCONNECTED
• EZCA_NOTIMELYRESPONSE
• EZCA_INGROUP
• EZCA_NOTINGROUP

4.2 Automatic
Error Reporting

Although the return codes are useful, the real information associated with anomalous return
codes is found in the error messages. By default, EZCA prints error messages (tostdout) as
soon as they are encountered. The user can toggle this automatic error reporting feature with
the following functions.

• void ezcaAutoErrorMessageOn()
• void ezcaAutoErrorMessageOff()

The default state is on. The user may call these as often as he wishes and at any time
throughout the program.

4.3 Requested
Error Messages

For tighter control over error messages, EZCA provides two error handling mechanisms.

• void ezcaPerror(char *prefix)
• int ezcaGetErrorString(char *prefix, char **buff)

Both of these error reporting facilities report the status, including success, of thelast EZCA
call (except for at the end of groups discussed later). In both functions,prefix is a user-
supplied character string (possiblyNULL) that EZCA will use as a prefix to its error message.

ezcaPerror prints the optional prefix with the error message tostdout. ezcaGetErrorString
allocates a buffer and fills it with the optional prefix and error message. It then returns the
address of the buffer in the user-supplied pointerbuff . It then becomes the user’s responsibility
to free the buffer using the following.

• void ezcaFree(void *buff)

Following is the programusr2.c, a modification ofusr1.c, that uses these new error functions.

usr2.c #include <stdio.h>

/* following needed when using EZCA */
#include <tsDefs.h>
#include <cadef.h>
#include <ezca.h>

main()
{

double d;
short s[2];
char *error_msg_buff;

 ezcaAutoErrorMessageOff();

5 Groups

EZCA Primer 5

 s[0] = 10; s[1] = -21;
 if (ezcaPut(“mywaveform”, ezcaShort, 2, s))

ezcaPerror (“Put Error:”);

 if (ezcaGet(“mygenerator”, ezcaDouble, 1, &d))
 {

ezcaGetErrorString (NULL, &error_msg_buff);
printf(“Get Error: %s\n”, error_msg_buff);
ezcaFree ((void *) error_msg_buff);

 } /* endif */

} /* end main() */

The first thing to notice is the new include filestdio.h. It was brought in because we used the
constantNULL in our call toezcaGetErrorString.

We introduced a new variable,error_msg_buff, where we plan to haveezcaGetErrorString
place the address of the buffer it allocates.

Our first call is toezcaAutoErrorMessageOff. This turns off the automatic error message
reporting that is the default in EZCA. We could have left it on. Doing so in this program would
have resulted in errors being reported twice, once automatically and once with our explicit
requests.

Our call toezcaPut is the same. This time we test the return status. Recall a return status of 0 is
always an indication of success. Anything else indicates a problem. Here we useezcaPerror to
report the problem with the write using the prefix‘‘Put Error:’’ . If something went wrong
with the write, the error message would be written tostdout with our specified prefix.

Our call toezcaGet is also the same. Here we usedezcaGetErrorString without specifying
the optional prefix to have the error message placed into an allocated buffer and the address of
the buffer placed into our variableerror_msg_buff. We print the error with our own prefix
message specified in the print statement rather than the EZCA function and then free the
allocated string usingezcaFree.

Assuming that both process variables cannot be found on any IOCs, executingusr2 would look
like this.

% usr2
Put Error: ezcaPut(): channel not currently connected
Get Error: ezcaGet(): channel not currently connected
%

5 Groups

When doing a large block of unconditional reads and/or writes, it is more efficient to do them
in a group rather than individually. Groups are delineated using the following two EZCA
functions.

• int ezcaStartGroup()
• int ezcaEndGroup() or int ezcaEndGroupWithReport(int **rcs, int *nrcs)

Making an EZCA call in the context of an EZCA group merely checks the validity of the
arguments. The actual work is postponed until the end of the group is encountered.

Not all of the EZCA functions respect the context of a group. Only those functions mentioned
in section 3 have their work postponed. All other EZCA functions are always performed
immediately.

Consider the following programusr3.c which is another modification ofusr1.c.

5 Groups

6 EZCA Primer

usr3.c #include <stdio.h>
/* following needed when using EZCA */
#include <tsDefs.h>
#include <cadef.h>
#include <ezca.h>

main()
{

double d;
short s[2];
char *error_msg_buff;

 ezcaAutoErrorMessageOff();

 ezcaStartGroup ();

 s[0] = 10; s[1] = -21;
 ezcaPut(“mywaveform”, ezcaShort, 2, s);

 ezcaGet(“mygenerator”, ezcaDouble, 1, &d);

 if (ezcaEndGroup ())
ezcaPerror(NULL);

} /* end main() */

Note that we have removed the error reporting functions found inusr2.c from ezcaPut and
ezcaGet, although we were not required to do so. We have also placed both of these functions
in a group by surrounding them withezcaStartGroup andezcaEndGroup.

By placing these functions into a group we have postponed the work untilezcaEndGroup is
encountered. Each function simply checks the validity of the arguments and places the work
onto a list to be processed later.ezcaEndGroup performs all the batched work. It returns the
first encountered non-successful return code (based on their order of appearance) in the group.
If all the batched work returned successfully,ezcaEndGroup returnsEZCA_OK which is 0.

ezcaPerror behaves a little bit differently here. When called afterezcaEndGroup (and before
a call to any other EZCA function) it prints a status linefor every function in the group. This
includes those functions with successful return codes.

Under the same assumption as before, that none of the process variables can be found,
executingusr3 would look like this.

% usr3
ezcaPut(): channel not currently connected
ezcaGet(): channel not currently connected
%

Assuming that all the arguments to all the functions in the group are valid, there is no
difference in placingezcaStartGroup and ezcaEndGroup around the EZCA functions as
they appear inusr1.c or in usr2.c. In usr2.c the return code from each EZCA function would
have indicated success (assuming all the arguments are valid).

If some of the arguments were invalid, then surrounding the EZCA calls withezcaStartGroup
andezcaEndGroup in usr1.c andusr2.c would simply produce different output. Inusr2.c the
invalid argument error message would appear twice, once immediately after the function call
and once as a result of theezcaPerror at the end of the group.

Users interested in the return status of all theall the EZCA calls in a group should use
ezcaEndGroupWithReport instead ofezcaEndGroup.

5 Groups

EZCA Primer 7

Like ezcaEndGroup, ezcaEndGroupWithReport performs all the batched work and returns
the first encountered non-successful return code orEZCA_OK . Additionally,
ezcaEndGroupWithReport allocates a vector of return codes, one element for each member
of the group, and returns that vector as well as its length to the user. It then becomes the user’s
responsibility to free the acquired vector usingezcaFree.

Consider the following programusr4.c, a modification of usr3.c where we replaced
ezcaEndGroup with ezcaEndGroupWithReport.

usr4.c #include <stdio.h>
/* following needed when using EZCA */
#include <tsDefs.h>
#include <cadef.h>
#include <ezca.h>

main()
{

double d;
short s[2];
char *error_msg_buff;
int i, *rcs, nrcs;

 ezcaAutoErrorMessageOff();

ezcaStartGroup();

 s[0] = 10; s[1] = -21;
 ezcaPut(“mywaveform”, ezcaShort, 2, s);

 ezcaGet(“mygenerator”, ezcaDouble, 1, &d);

ezcaEndGroupWithReport(&rcs, &nrcs);

for (i = 0; i < nrcs; i ++)
if (rcs[i] != EZCA_OK)

printf(“Call %d had abnormal return status %d\n”, i, rcs[i]);

ezcaFree((void *) rcs);

} /* end main() */

5.1 Bad
Grouping

Not all programs should use EZCA groups. The following is an example program that is a poor
candidate for groups.

bad.c #include <stdio.h>
/* following needed when using EZCA */
#include <tsDefs.h>
#include <cadef.h>
#include <ezca.h>

main()
{

double d;
short s[2];

 ezcaAutoErrorMessageOff();

 ezcaStartGroup();

 ezcaGet(“mygenerator”, ezcaDouble, 1, &d);

6 Monitors

8 EZCA Primer

 if (d < 0)
 {

s[0] = 10; s[1] = -21;
ezcaPut(“mywaveform”, ezcaShort, 2, s);

 } /* endif */

 if (ezcaEndGroup())
ezcaPerror(NULL);

} /* end main() */

Here we have changed the order of the read and write. We read first, and based on the value we
read weconditionally write. This program is destined to fail. Recall that theezcaGet read is
postponed untilezcaEndGroup is executed. This means that the value found in the variabled
is garbage when the test on it is performed.

6 Monitors

Another optimization (in addition to groups) available to users are monitors. If the user has a
process variable whose value will not change very often but will be read frequently, then the
user should establish an monitor on that process variable.

Monitors can be placed and removed at any time using the following.

• int ezcaSetMonitor(char *pvname, char ezcatype)
• int ezcaClearMonitor(char *pvname, char ezcatype)

There is no difference in the way a user reads the value, i.e.,all theezcaGet family of functions
are called exactly the same way. CallingezcaSetMonitor simply instructs EZCA to
immediately establish a CA monitor of the specified request type on the named process
variable. Any time the value of the process variable changes (presumably infrequently) EZCA
automatically and silently caches the new value. All subsequent reads of that process variable
under that request type will not generate a CA read, but rather, will simply read the cached
value. This arrangement continues until the monitor is removed usingezcaClearMonitor.

6.1 Monitor
Check

The user can also poll the monitor to see if a new value has come in since the last time the
value was read. This is done with the following function.

• int ezcaNewMonitorValue(char *pvname, char ezcatype)

This function returns a non-zero value if there is a new (unread) value in the monitor,
otherwise it returns 0. This function is particularly useful when the read operation is expensive
in time, e.g., reading large arrays.

6.2 Delay Users must exercise caution when using monitors. Because of the way CA is implemented, it is
possible to lose changes in process variables if there is a substantial amount of time between
any two adjacent EZCA calls. Substantial here is a relative term. It depends on how frequently
the values are likely to change.

To alleviate this problem, EZCA provides a function that should be called whenever using
monitors and there is a substantial amount of time between any two adjacent EZCA calls.
Between all such pair of calls, the user should call the following function.

7 Tuning EZCA

EZCA Primer 9

• int ezcaDelay(float sec)

Wheresec is always greater than 0, values around 0.01 should suffice.

7 Tuning EZCA

EZCA uses two tunable parameters to determine when to stop waiting for connections and
confirmations of reads and writes. They aretimeout and retrycount . EZCA uses them by
waiting timeout seconds and then, if necessary, waitingtimeout seconds a maximum of
retrycount more times, resulting in a maximum total timeout time of
timeout+(timeout*retrycount) = timeout*(1+retrycount) .

The default values for these parameters strikes a balance that hopefully serves most users
efficiently. The hope is that those users that can connect quickly are served as well as those that
require a little more time.

Users can not only discover the values of these parameters using

• float ezcaGetTimeout()
• int ezcaGetRetryCount()

but they can also set these parameters using

• int ezcaSetTimeout(float sec)
• int ezcaSetRetryCount(int retry).

Here all arguments must be greater than 0.

Empirically, we have observed that under normal circumstances EZCA can reliably process
(read or write) 200 process variables per second. Users should adjusttimeout andretrycount
accordingly.

For example, with atimeout of 0.2 seconds and aretrycount of 9, EZCA will wait a
maximum of 0.2*(1+9) = 2 seconds. This will allow the user to process groups of up to 400
gets and/or puts reliably. If a particular group has 600 operations to perform, the user must
increase the maximum timeout to at least 3 seconds to more adequately assure reliable
processing. This may be done by increasingtimeout and/orretrycount accordingly.

8 Escape to Raw Channel Access

EZCA is designed to provide an easy to use interface to CA. In doing so, we were forced to
sacrifice some of the functionality and efficiency found in CA. Users of EZCA that
occasionally need to make a call directly to the CA library can do so in an EZCA program by
calling the EZCA function that converts a process variable name to a CA chid.

• int ezcaPvToChid(char *pvname, chid **cid)

Thecid should already be connected for you and ready to use with any CA function. Calls to
CA functions may be mixed freely with EZCA function calls.

9 New Channel Access

10 EZCA Primer

9 New Channel Access

EZCA is designed and implemented to use blocking writes. That is, to wait for
acknowledgment that the value successfully got into the process variable and all processing
that resulted from that write has successfully completed (ca_array_put_callback). This was
only available in CA as of EPICS release 3.11.6.

Prior to release 3.11.6, writing in CA simply initiated the write and there was no way to
automatically validate that the value got to the process variable or that all resulting processing
was successfully completed (ca_array_put).

Users performingezcaPut to process variables residing on IOCs booted with versions of
EPICSprior to 3.11.6 will always get return codes indicating timeout errors for all such writes.
The antiquated versions of EPICS never acknowledge the write, so EZCA is fooled into
thinking that the write was not successful.

In order to eliminate these annoying error messages, we have provided a backward compatible
version of EZCA, one that uses olderca_array_put instead of the newer
ca_array_put_callback. To use this version the user simply adds one switch to thecompile
line of the makefile. No change is necessary to the user code. Below is a copy of themakefile
presented in section 2.2. It already has the compile switch in place.

makefile CC = acc

EPICSDIR = /home/opiinj2/epics
EPICS_ADD_ON_DIR = $(EPICSDIR)/add_on

EZCAINCDIR = -I$(EPICS_ADD_ON_DIR)/include
EPICSINCDIR = -I$(EPICSDIR)/R3.11.6/share/epicsH
INCLUDEDIRS = $(EZCAINCDIR) $(EPICSINCDIR)

EZCALIBDIR = $(EPICS_ADD_ON)/lib
EZCALIB = -lezca

CALIBDIR = $(EPICSDIR)/R3.11.6/Unix/sun4/bin
CALIBS = -lca -lCom -lUnix

LIBDIRS = -L$(CALIBDIR) -L$(EZCALIBDIR)
LIBS = $(EZCALIB) $(CALIBS)

CFLAGS = -c
DEFINES = -DUNIX -USUN4 -DOLDCA

usr1: usr1.o
$(CC) -o usr1 usr1.o $(LIBDIRS) $(LIBS)

clean:
/bin/rm -f *.o usr1

.c.o:$*.c
$(CC) $(CFLAGS) $(INCLUDEDIRS) $(DEFINES) $*.c

This changesall writes to use the old CA write. It does not force the old version to
acknowledge the write, it simply instructs EZCA to use the old CA write (ca_array_put) and
not to wait for the acknowledgment.

To take advantage of the new CA write (ca_array_put_callback), simply remove-DOLDCA
from themakefile and re-compile.

