Performance Studies of Microchannel Plate PMTs in High Magnetic Fields

Albert Lehmann (Universität Erlangen-Nürnberg) on behalf of the PANDA Cherenkov group

- Introduction
- Performance in magnetic fields
- Time resolution measurements
- Summary

supported by BMBF and GSI

Albert Lehmann

New Accelerator Facility FAIR at GSI

FAIR = Facility for Antiproton and Ion Research

HESR = High Energy Storage Ring

- 1 15 GeV/c
 cooled
 antiprotons
- momentum
 resolution up to
 δp/p ~ 10⁻⁵
- annihilation rate 10⁷ Hz
- PANDA

Albert Lehmann

PANDA Detector

anti<u>P</u>roton-<u>AN</u>nihilation at <u>DA</u>rmstadt

12m

3.5 m

- Full solid angle coverage
- Strong magnetic field (2T)
- High resolution tracking
- Good π/K separation \Rightarrow **DIRC**

Albert Lehmann

RICH 2007 --- Trieste --- October 15-20, 2007

ī and a

PANDA – DIRC Versions

\rightarrow overview talk of K. Föhl

• Barrel-DIRC

 \rightarrow poster of C. Schwarz

- time-of-propagation (TOP) version
 - measure TOP of Cherenkov photons from creation to the photosensor
 - 2-dim. readout: X and TOP
- 3D version
 - TOP information used to correct for dispersion effects
 - 3-dim. readout: X, Y and TOP
- Endcap Disc-DIRC \rightarrow poster of P. Schönmeier
 - TOP version
 - prolongation of TOP and dispersion correction by using dichroic filters
 - 2-dim. readout: ϕ and TOP
 - version with focussing light guides
 - dispersion correction and focussing with LiF plate and light guide
 - 3-dim. readout: θ , ϕ and TOP

Albert Lehmann

Technical Challenges to Photon Sensors

- Photon rates in the MHz regime
 - high rate stability (rates of several MHz/cm²)
 - very short pulses (< 10 ns) to avoid pile-up
 - long lifetime
- Few photons per track
 - high detection efficiency $\eta = QE * CE * GE$ [QE = quantum efficiency; CE = collection efficiency; GE = geometrical efficiency]
 - low dark count rate
- Single photon detection in high B-field
 - high gain (> $5*10^5$) even in a 2 Tesla magnetic field
- Time resolution to separate π/K with TOP

very good single photon transit time resolution of < 50 ps

Albert Lehmann

Microchannel Plate PMT

electron multiplication in glass capillaries ($\emptyset \approx 10 \ \mu m$)

- very fast time response:
 - signal rise time = 0.5 1.5 ns
 - TTS < 50 ps
- high gain:
 - $>10^6$ with 2 MCP stages
 - single photon sensitivity
- usable in high magnetic fields
- low dark count rate
- quantum efficiency comparable to that of standard vacuum PMTs
- multi-anode PMTs possible
- caveats:
 - life time
 - price

Albert Lehmann

Studied MCP-PMTs

Burle 85011 Burle Prototype

BINP #73

Fig. 1. The MCP PMT layout, 1-photocathode, 2-MCPs, 3-anode, Sizes are in millimeters

MCP channel diameter (µm)	25	10	6
Peak wavelength (nm)	400	400(?)	500
Active area (mm x mm)	51 x 51	51 x 51	Ø 18
Number of pixels	64 (8 x 8)	64 (8 x 8)	1
Pixel size (mm x mm)	5.9 x 5.9	5.9 x 5.9	Ø 18
Protection of photo cathode	No	No	5-9 nm Al2O3

Albert Lehmann

Setup at Juelich Dipole Magnet

- Dipole magnet
 - homogeneous field up to 2.05 T
 - 6 cm pole shoe gap
 - field measured with Hall probe
- PiLas light pulser
 - pulse width 14 ps (σ); $\lambda = 372$ nm
 - glass fibre and micro lenses
 - gray filters
- MCP-PMTs
 - mounted in shielded box
 - BINP #73 with $\phi = 15^{\circ}$ steps betw. field direction and MCP-axis
 - different amplifiers
 - Ortec VT120A (350 MHz, x200)
 - Ortec 9306 (1.0 GHz, x100)
 - Hamamatsu C5594 (1.5 GHz, x63)

Albert Lehmann

Analysis of Gain and Time Resolution

- Analysis of gain
 - fitted with a discrete Poissonian distribution convoluted with k Gauss distributions

$$f(x, N, \sigma)$$

= $C \sum_{k>0} \left[\frac{e^{-N} N^{k}}{k!} \cdot \frac{1}{\sigma \sqrt{2\pi k}} \exp \left\{ -\frac{(x-kx_{0})^{2}}{2k\sigma^{2}} \right\} \right]$
with $x_{0} := position of SEP$ (Poisson scale)

- Analysis of time resolution
 - measure time walk (charge vs delay)
 - slices along charge axis (ADC) and Gaussian fits to TDC distribution $\Rightarrow \sigma_{1}$

Albert Lehmann

Gain in Magnetic Field (I)

Burle 85011 (25µm) BINP #73 (6µm) Burle Prototype (10µm) Gain vs HV Gain vs HV Gain vs HV 10^{7} 10 10' Burle 10µm Prototype Burle 25µm (85011) B = 0.00 T • B = 0.00 T B = 0.25 T B = 0.25 T B = 0.50 TA B = 0.50 T B = 0.75 T**V** B = 0.75 T B = 1.00 TB = 1.00 TB = 1.25 TB = 1.25 T B = 1.50 T10⁶ 10⁶ 10⁶ B = 1.75 T ф. B = 2.00 Tgain 5***10**5 gain gain **BINP #73** B = 0.00 TB = 0.25 T B = 0.50 T10⁵ 10⁵ 10⁵ B = 0.75 T B = 1.00 T B = 1.25 TB = 1.50 T B = 1.75 T B = 2.00 T1800 2000 2200 2400 1800 2000 2200 2400 2600 2400 2600 2800 high voltage Umcp [-V] high voltage U [-V] high voltage U [-V]

- gain improves significantly with smaller MCP channel diameter
- gain of Burle 85011 not enough for single photon detection with PANDA

Albert Lehmann

Gain in Magnetic Field (II)

Burle 85011 (25µm)

Burle Prototype (10µm)

BINP #73 (6µm)

- gain of Burle 85011 collapses above 1 Tesla field
- Burle 10 μm prototype can be used for single photon detection up to 2 Tesla
- moderate voltages enough for single photon detection with BINP #73 Albert Lehmann RICH 2007 --- Trieste --- October 15-20, 2007

Time Resolution in Magnetic Field

Burle 85011 (25µm)

Burle Prototype (10µm)

BINP #73 (6µm)

- all given time resolutions show upper limits (< 80 ps)
- time resolution improves with MCP channel diameter
- time resolution appears to be almost independent of B-field Albert Lehmann RICH 2007 --- Trieste --- October 15-20, 2007

Variation of the Field Axis

- ϕ = angle between field direction and PMT axis
- Photo electron peaks become asymmetric
- Photo electron peaks become narrower and more clearly separated at larger φ-angles
 - probably the electrons after the first MCP hit less capillaries of the second MCP ⇒ less spread

Albert Lehmann

Performance at Different Field Axes

time resolution (measured)

• gain

Albert Lehmann

Timing Measurements with Oscilloscope

- 3 GHz / 20 Gs oscilloscope
- various amplifiers and discriminators tested

- no magnetic field
- measure area (C2)
- measure delay of PiLas reference pulse C3 to MCP pulse C1
 - \Rightarrow jitter \equiv time resolution

Time Resolution with Oscilloscope

- True MCP time resolution blurred
 - sampling noise of oscilloscope
 - long term drifts (e.g., temperature)
 - electronics
 - cables (??)
 - width of laser pulses

- Resolution of electronics
 - scope (after noise filter): < 6 ps/ch</p>
 - LeCroy 821 discr.: ~ 6 ps
 - TTL-NIM converter: < 6 ps</p>
- PiLas laser
 - pulse width: $\sim 14 \text{ ps}$

Albert Lehmann

Amplifier and Discriminator Comparison

Time Resolutions in ps (at a gain of 2.5*10^6)

Amplifier LC 821 LC 620CLR CF4000 Ortec 934	Average
Fixed Dulce Height	
Area in nVs	
Ham. C5594 [-1.2,-0.4] 27.7 33.1 25.9 27.9	28.7
Ort. 9306 [-1.2,-0.4] 29.8 34.9 27.9 31.4	31.0
Ort. VT120A [-1.2,-0.4] 30.4 37.7 29.8 31.6	32.4
Average 29.3 35.2 27.9 30.3	
Single Photons	
Q in pC	
Ham. C5594 [-0.45,-0.10] 30.5 37.7 27.7 30.7	31.7
Ort. 9306 [-0.45,-0.10] 30.2 35.4 27.8 31.2	31.2
Ort. VT120A [-0.45,-0.10] 26.8 33.2 26.5 29.0	28.9
Average 29.2 35.4 27.3 30.3	

- Best amplifier at fixed pulse height: C5594
- Best amplifier for single photons: VT120A
- Best discriminator: EG&G ESN CF4000

Albert Lehmann

Time Resolution without Magnetic Field

Amplifier Ortec VT120A (x200; 350 Mhz) --- Discriminator LeCroy 821

• Resolutions corrected for electronics effects and laser pulse width

45 ps

37 ps

20 ps

- Burle 85011 (25 μm)
- Burle Prototype (10 μm)
- BINP #73 (6 μm)
- Single photon time resolution of BINP #73 is by far the best !

Albert Lehmann

Summary

- Single photon gain
 - 25 μ m Burle MCP-PMT only usable up to ~ 1T (without tilt)
 - 10 µm Burle MCP-PMT usable for single photon detection up to 2 Tesla at high operation voltage, but will presumably be problematic at larger tilt angles
 - BINP #73 MCP-PMT well usable for single photon detection at 2 Tesla and at 45° tilt angle
- Single photon time resolution
 - inside B-field all studied MCP-PMTs better than ~80 ps
 - oscilloscope measurements without B-field: Burle MCP-PMTs <50 ps and BINP #73 MCP-PMT <30 ps
 - best resolution of ~20 ps obtained for BINP #73
- BINP #73 MCP-PMT shows the best performance

Albert Lehmann