Prototype of a DIRC-barrel for the PANDA Experiment

Roland Hohler*

GSI, Darmstadt Goethe University Frankfurt

IEEE Nuclear Science Symposium 2008 Dresden

* D. Lehmann, K. Peters, G. Schepers, C. Schwarz and C. Sfienti

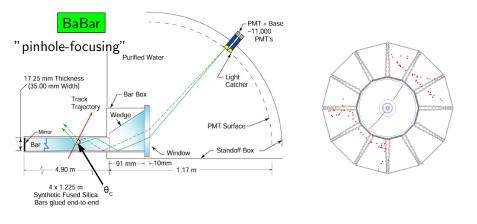
Introduction Radiator quality test Prototype

PANDA detector: Cherenkov DIRC concept

PANDA detector: Cherenkov AntiProton <u>An</u>nihilations at <u>Da</u>rmstadt

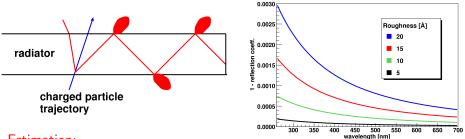
Roland Hohler (GSI & Uni Frankfurt)

DIRC-barrel


DIRC-Prototype for PANDA

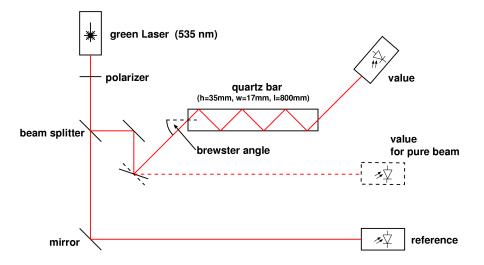
DIRC-disk

RICH


DIRC concept

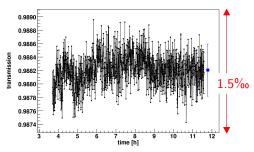
Detection of Internally Reflected Cherenkov light

Motivation for the radiator quality test


Estimation:

Assumption: 100 reflections, photons in UV-range and single reflection loss of ≈ 0.002

- \Rightarrow transmission of 0.998¹⁰⁰ \Rightarrow 81.9% (roughness: $\sigma \approx$ 22 Å)
- \Rightarrow 18.1% loss at low photon statistic


to get transmission of 90% \Rightarrow single reflection loss of \approx 0.001 $\sigma \approx 16 \text{ Å} \Rightarrow \Delta \sigma \approx 6 \text{ Å}$

Internal reflection setup

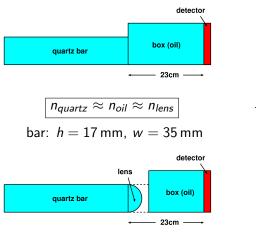
Introduction Radiator quality test Prototype Motivation Total internal reflection setup Roughness determination

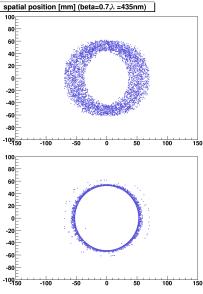
Roughness determination

 $T = 0.9882 \pm 0.0004$

$$T = \mathcal{R}^{N} \cdot \exp\left(-\frac{L}{\Lambda}\right)$$

observed: 15 reflections inside the quartz bar

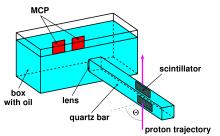

 $\begin{array}{l} \mbox{bulk absorption:} \\ \Lambda = (281 \pm 97)\,\mbox{m} \quad (535\,\mbox{nm}) \end{array}$


 $\begin{array}{l} \Rightarrow \mbox{ reflection coefficient:} \\ \mathcal{R} = 0.99944 \pm 0.00009 \\ 1 - \mathcal{R} = 0.00056 \end{array}$

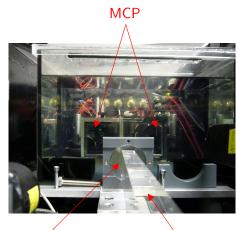
roughness: $\Rightarrow \sigma = (17.8 \pm 1.5) \text{ Å}$ (bar specifications: 20 Å)

Focusing readout Photon detector First beam test

Photon detector


	Vacuum-PMT	MCP-PMT	SiPMT
Gain	$10^{6} - 10^{8}$	$10^{5} - 10^{7}$	$10^5 - 10^6$
Max. B-field	< 0.05 T	2 T	prob. high
Dark count	< 100 Hz	10 kHz	1 MHz/pixel
Max. rate	10 ⁷ Hz	$10^{6} - 10^{7} \text{Hz}$	prob. low
Efficiency	20 %	15 %	$\ll 15\%$
TTS	> 350 ps	$< 50 \mathrm{ps}$	100 ps
Lifetime	$> 1000 \mathrm{C/cm^2}$	$< 1{ m C/cm^2}$	prob. high

provided by A. Lehmann (University Erlangen)


required a high insensitivity to magnetic fields \Rightarrow MCP Burle 85011-501 Microchannel Plate PMT

DIRC-Prototype for PANDA

Beam test setup

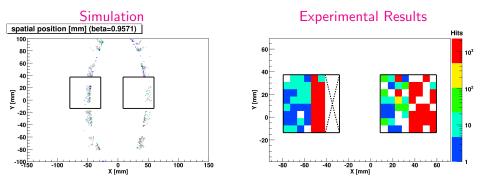
- Proton beam: T = 2.3 GeV $\Rightarrow \beta = 0.9571$
- beam incidence angle: $\Theta = 57^{\circ}$
- lens focal length: f = 15 cm
- distance bar screen: 23 cm
- MCP active area (8 × 8 pixel): 51 × 51 mm²

lens

quartz bar

Thanks for the helpful support:

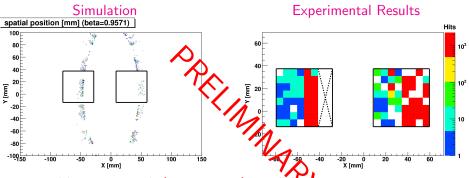
W. König, M. Palka, M. Traxler (GSI)


Roland Hohler (GSI & Uni Frankfurt)

DIRC-Prototype for PAND

October 21, 2008

9 / 11


First results (preliminary)

▶ total beam time: 6h (28 - 30.9.08), used dataset 15min

- successful test run: Cherenkov ring fragments were measured
- results confirm the simulation
- further analyses follow

First results (preliminary)

- ▶ total beam time: 6h (28 30.9.08), used dataset 15min
- successful test run: Cherenkov ring fragments were measured
- results confirm the simulation
- further analyses follow

Summary & Outlook

- Radiator quality:
 - transmission precision < 1 % was achieved
 - able to determine the quartz bar roughness with $\Delta\sigma < 2$ Å
- Focusing readout realized by a lens
- MCP as photon detector cause of its insensitivity to a magnetic field
- Beam test:
 - Cherenkov ring fragments were measured
 - simulation and results are in agreement
 - detailed analyses are in progress
- Measure the radiator quality test with other wavelengths
- Next beam time test with 4 MCPs and setup improvements