The PANDA MVD Strip Detector

Tommaso Quagli, Robert Schnell, Hans-Georg Zaunick
II. Physikalisches Institut, Justus-Liebig-Universität Gießen

The PANDA Detector
- PANDA (AntiProton ANnihilation at DArmstadt)
 - fixed target experiment
 - almost 4π acceptance
 - cooled Antiproton beam using
 - electron cooling
 - stochastic cooling
 - momentum from 1.5 up to 15 GeV·c⁻¹
 - peak luminosity of 2·10³² cm⁻²·s⁻¹
- detector divided into
 - Target Spectrometer
 - Forward Spectrometer
 - MVD (Micro Vertex Detector)
 - tracking detector for charged particles
 - silicon pixel and strip detectors
 - main tasks
 - vertex reconstruction for primary and secondary vertices
 - improvement of momentum resolution
 - additional input for global PID
 - requirements
 - trigger-less readout with high rate capability
 - good time resolution and low material budget

Sensors
- double-sided silicon strip detectors
 - CiS GmbH (Erfurt, Germany)
 - FZ Si, 4", (285 ± 10) μm
 - 2.3 ... 5.0 kΩcm, p-spray isolation
 - 8 guard rings, punch-through biasing
 - AC-coupling, 90° stereo angle
 - 65/50 μm pitch
- total single strip capacitances:
 - performed with probe-card
 - p-side (l=33.32 mm): (9.8 ± 0.2) pF
 - n-side (l=58.28 mm): (17.1 ± 0.4) pF

MVD Mechanical Design
- the MVD comprises 4 sub-structures
 - pixel barrels
 - pixel disks
 - strip barrels
 - strip disks
- requirements to materials
 - low radiation length
 - high thermal conductivity
 - mechanical stability
 - stable under high radiation levels
- CAD design, schematic cross section and prototype of the strip barrel stave
- materials chosen
 - barrel holding structure:
 - sandwich of carbon fibers (M55J) and Rohacell foam core
 - barrel staves:
 - sandwich of carbon fibers and carbon foam (POCCO HTC) with high thermal conductivity at place of electronics, Rohacell at sensor location
 - embedded cooling pipe beneath the front-end chips

Hybridization
- pitch-adapter based on flex-PCB
 - Manufacturer: GS Swiss PCB
 - 2-layer flex-PCB
 - dielectric thickness: 25 μm polyimide
 - laser drilling: 50 μm blind vias
 - smallest wire and spacing: 35 μm
 - copper thickness: 2x12 μm
 - surface chem. Ni/Au for bonding
 - pitch- adapters tested successfully
 - next step: assembly of flex-PCB front-end boards
 - 2-layer flex-PCB
 - 1 front-end chip connected to sensor via fan-out structure
 - goal: integration of pitch-adapter into readout-hybrid
 → one multi-layer flex-PCB at stave-level

Electronics
- front-end development
 - ASIC design at INFN, Torino
 - self-triggering
 - fully digital output
 - time-over-threshold (ToT) digitization using analog interpolators
 - precise time resolution

- Module Data Concentrator at stave level
 - ASIC design carried out at FH-SWF, Iserlohn
 - decoding of front-end data
 - mapping, clustering
 - slow control functions
 - interfacing DAQ via serial GBT E-links
 - Strip-DAQ-chain
 - use fast optical data links
 → utilize GBT (CERN)