Design of a test station for silicon strip sensors for PANDA*

Felix Krüger*
Kai-Thomas Brinkmann Hans-Georg Zaunick
Robert Schnell Lars Ackermann

Institut für Kern- und Teilchenphysik
Technische Universität Dresden

* supported by BMBF and EU

DPG spring meeting, HK40, March 17, 2009
Outline

1. Introduction

2. Test Station for Silicon Strip Sensors

3. Characterisation of Si-Strip Sensor Modules
The PANDA Microvertex Detector

- Target Pipe
- Barrel Strip Part
- Disk Strips
- Disk Pixel
- Beam Pipe
- Barrel Pixel Part
12 million pixel channels → about 120 pixel modules
160,000 strip channels → about 200 strip modules
12 million pixel channels → about 120 pixel modules
160,000 strip channels → about 200 strip modules

need for solid tests of functionality of sensor modules

- fast characterization of all modules
- determination of bad channels or defunct frontends
- determination of leakage current and depletion voltage
- possibility to decide which modules may be used
A setup for characterisation of Si-strip sensors and frontends

- handling Si-strip sensors and frontend electronics
- development of readout software
- measurements with ionizing radiation
Sensor Module

- L-shaped PCB for double sided mounting
- Sensors with area $2 \times 2 \, cm^2$, thickness $320 \, \mu m$, $50 \, \mu m$ pitch, 90° stereo angle
- Frontend APV25-S1
Readout and Feature Extraction

- **hardware**
 - modular setup
 - standard connections to PC
 - easy parameter setting and readout of all components

- **software**
 - zero suppression
 - identify pedestals and noise
 - find hits and save to file
 - clustering for online monitoring
Readout and Feature Extraction

- **hardware**
 - modular setup
 - standard connections to PC
 - easy parameter setting and readout of all components

- **software**
 - zero suppression
 - identify pedestals and noise
 - find hits and save to file
 - clustering for online monitoring
Online Monitoring and Parameter Settings

- APV25 parameter settings
- raw data and pedestals / noise
- online energy deposit monitoring and clustering
Online Monitoring and Parameter Settings

- APV25 parameter settings
- raw data and pedestals / noise
- online energy deposit monitoring and clustering
Online Monitoring and Parameter Settings

- APV25 parameter settings
- raw data and pedestals / noise
- online energy deposit monitoring and clustering
Characterisation of Si-strip sensors modules

- **Tests of functionality of sensor modules**
 1. Analysis of leakage current and noise to determine optimal depletion voltage
 2. Detailed calibration of each channel with APV internal charge generator
 3. Measurements with 90Sr to get response of sensor strips

- Store results in MySQL-database
leakage current and noise characteristics

\[ENC = f(d(V_{Dep})), \quad I_{\text{Leakage}} = f(V_{Dep}, d(V_{Dep})) \]

e.g. for Module 09

- \(V_{Dep} \approx 70\text{V} \)
- \(I_{\text{Leakage}} \approx 85\text{nA} \)
Calibration

- injection of defined charge into FE preamps
- store slope parameters for later charge reconstruction

response characteristics of all FE channels
Measurement with ^{90}Sr

- detect noisy / defunct channels or FE
- channels 0, 64, 128, 192, 256, 320 not bonded
Database Structure

- Calibration Parameters
- Measurement with Sr–90
- Leakage Current
- Noise

- Interface–Classes
- MySQL Database
- Webserver
- Graphical Webinterface

Analysis

WWW
module test results

- until now 15 modules tested
- leakage currents between 85nA - 700nA
- depletion voltage about 35V - 75V
- < 1.5% bad channels per module
- 1 module with defunct frontend
Summary

- stable test station to characterize silicon strip sensor modules
- measurements with radioactive sources
- simple tests to confirm functionality of sensor modules
- database interface to store results
- base for energy loss, scattering and tracking studies
Summary

- stable test station to characterize silicon strip sensor modules
- measurements with radioactive sources
- simple tests to confirm functionality of sensor modules
- database interface to store results
- base for energy loss, scattering and tracking studies

Outlook

- tests with different sensor types
- possibility to bond single strips to learn more about depletion, leakage current and radiation damage
- web server planned for better compatibility among different groups within PANDA (connections from Bonn, Mainz and Dresden)