Contributions to the PANDA MVD Strip Detector Readout (FAIR-019)

R. Schnell, CANU 2014, Bad Honnef - December 15/16, 2014
The PANDA MVD Strip Detector

- Innermost detector of the PANDA Target Spectrometer
- Located at the crossing of beam pipe and target pipe

- Tracking of charged particles
- Vertex reconstruction for primary and secondary vertices
- Improvement of momentum resolution and PID
The PANDA MVD Strip Detector

- Hybrid silicon pixel sensors
- Double-sided silicon strip sensors
 - 4 barrel layers
 • 2 pixel barrels
 • 2 strip barrels
 - 6 disk layers
 • 4 pixel disks
 • 2 mixed disks
 (inner pixel, outer strips)
The PANDA MVD Strip Detector

- Hybrid silicon pixel sensors
- Double-sided silicon strip sensors
 - 4 barrel layers
 • 2 pixel barrels
 • 2 strip barrels
 - 6 disk layers
 • 4 pixel disks
 • 2 mixed disks
 (inner pixel, outer strips)
 - Requirements
 • low material budget (<10% X_0)
 • high radiation tolerance
 • self-triggering readout!
Strip DAQ Chain

Double-Sided Silicon Strip Sensor → Front-End → Data Concentrator → DAQ

- PASTA
- MDC
- GBT MMB CN
Strip DAQ Chain

Double-Sided Silicon Strip Sensor

MDC (Module Data Concentrator ASIC)

GBT

MMB (MVD Multiplexer Board)

Compute Node

SODANET

DAQ

GBTs

R. Schnell, CANU 2014, Bad Honnef - December 15/16, 2014
Strip Detectors

- Barrel sensors
 - rectangular 60x35 mm²
 896+512 strips
 - square 35x35 mm²
 512+512 strips
- 65 µm strip pitch
 → 130 µm readout pitch

- Disk sensors
 - trapezoidal
 58 mm high, 37 mm long side
 - 768+768 strips
 - 15° stereo angle
 - 45 µm strip pitch
 → 90 µm readout pitch
Strip Detectors

- **Barrel sensors**
 - rectangular 60x35 mm²
 - 896+512 strips
 - square 35x35 mm²
 - 512+512 strips
 - 65 µm strip pitch
 → 130 µm readout pitch

- **Disk sensors**
 - trapezoidal
 - 58 mm high, 37 mm long side
 - 768+768 strips
 - 15° stereo angle
 - 45 µm strip pitch
 → 90 µm readout pitch

First Sensor Batches for PANDA ordered by JLU Gießen and IKP Jülich.
PASTA Front-end

- 200,000 channels need to be read out
- **PASTA - PANDA Strip ASIC**
 - Measurement concept inspired by TOFPET architecture
 - ASIC for SiPM readout from EndoTOFPET-US collaboration
 - self-triggering, fully digital back-end
 - Complete redesign of analog stage for strip detectors
 - Time-over-Threshold (ToT) using analog interpolators
 - multiple ToT stages to reduce pile-up
 - low power consumption
 - precise time resolution
 - Joint development of:
 - University Gießen
 - Forschungszentrum Jülich
 - INFN Torino
PASTA Front-end

- Architecture of the chip
 - 2 discriminators for each of the 64 channels
 - 4 time-to-analog converters (TAC) per discriminator

V. Di Pietro A. Riccardi A. Goerres

technical advisors: A. Rivetti, M. Rolo
PASTA Front-end

- Dual threshold concept
 - time information t_1 from lower threshold V_{th_T} → reduce time-walk
 - hit validation from higher threshold V_{th_E}
 - ToT: t_1 to t_3

- Time measurement
 - coarse time from chip clock
 - fine time from interpolation (interpolation factor 128x @160 MHz → 50 ps bin size)
PASTA Front-end

- Linearity
 - charge up to 40 fC (10 MIPs)
 - good linearity at low input charges
 - deviations compensated by calibration
PASTA Front-end

- Noise (ENC) from simulations
 - designed for input capacitance 5 pF to 25 pF

Note: 1uA leakage current contributes additional 500 electrons
PASTA Front-end

- Noise (ENC) from simulations
 - designed for input capacitance 5 pF to 25 pF
 - p-side: approx. 350 e- @ 10 pF
 - n-side: approx. 550 e- @ 17 pF

Note: 1uA leakage current contributes additional 500 electrons
PASTA Front-end

Layout screen-shots

complete channel

2069 µm (1862 µm)

70.9 µm

200 µm gap with Pminus shell
to increase resistance of substrate

R. Schnell, CANU 2014, Bad Honnef - December 15/16, 2014
PASTA Front-end

Layout screen-shots

2.07 mm (1.86 mm)

4.54 mm (4.09 mm)

64 channels
(without global control)
PASTA Front-end

- Submission in commercial 110nm technology beginning 2015
 - design in 130nm – channel pitch 70.9 µm
 - shrinking by foundry, factor 0.9 → channel pitch 63.8 µm
- Mitigation of Single-Event-Upset (SEU)
 - triple modular redundancy
 - Hamming encoding
- Power consumption based on simulations

<table>
<thead>
<tr>
<th>front-end</th>
<th>TDC</th>
<th>TDC ctrl</th>
<th>global ctrl</th>
<th>drivers</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mW/ch</td>
<td>0.4 mW/ch</td>
<td>0.25 mW/ch</td>
<td>60 mW</td>
<td>4 x 8.5 mW</td>
<td>3.12 mW/ch</td>
</tr>
</tbody>
</table>

- target value: <4.0 mW/ch
- (LVDS drivers instead of SLVS)
Strip DAQ Chain

- PASTA
- MDC (Module Data Concentrator ASIC)
- GBT
- MMB (MVD Multiplexer Board)
- Compute Node
- SODANET

Double-Sided Silicon Strip Sensor

R. Schnell, CANU 2014, Bad Honnef - December 15/16, 2014
Module Data Concentrator (MDC)

- Data Concentrator ASIC at the stave level
 - Multiplexes all front-ends of one sensor
 - up to 12 front-ends per MDC
 - needs galvanic isolation of data lines, DC-balanced code
 - Slow control interface to front-end chips
 - Data concentration and feature extraction
Module Data Concentrator (MDC)

H. Sohlbach
FH Iserlohn
Module Data Concentrator (MDC)

- Power estimation
 - basic design: 72 mW
 - full design: 204 mW
 - SLVS-I/Os: 34 mW
 - Total basic: 106 mW
 - Total full: 236 mW

- Chip size estimation
 - 4.7 MGates → 20 mm²
 - 118 pads

- Use same commercial 110nm technology as PASTA
 - triple modular redundancy for all critical components
GBT

- Additional data concentration level
 • Multiplexes several MDCs connected via e-link protocol
 • Placed close to MVD
 • reduce length of electrical links
 • Fast optical links towards off-detector electronic
 • 3.2 Gbps user data rate
GBT boards

beam pipe

MVD
MVD Multiplexer Board (MMB)

- Off-detector electronics of the MVD
 (Developed in the Helmholtz Association of German Research Centers)

- **MTCA.4 compatible AMC module**
 - based on Xilinx Kintex-7 FPGA
 - 4 SFP/SFP+ cages (GTX transceiver)

- Connection to PANDA time distribution system (SODANET)

- Sends data to global PANDA DAQ system (Compute Nodes)
Test Tools – Laser Test Stand

- Recently set up by two Master students in Giessen

 - Laser
 - 1060 nm
 - internal or external trigger

 - X-Y-table
 - travel: 100 x 100 mm²
 - position resolution better than 1 µm

 - Data acquisition
 - Tracking-Station DAQ
Test Tools – Test Beams

- Test beam times at COSY
 • Tests of
 - sensors
 - readout electronics
 - DAQ
 • Synchronized data taking of pixel and strip systems
 • Soon: test of PASTA readout
Thank you for your Attention