Characterization of the Strip Front-End ASIC of the PANDA MVD with the JDRS
PANDA Experiment

- Cooled \bar{p} beam @HESR
 - $1.5 \text{ GeV/c} < p < 15 \text{ GeV/c}$
 - $\Delta p/p < 10^{-4}$

- Study strong interaction
 - Multi-s and c hadron spectroscopy
 - Exotic states
 - Nucleon structure
 - $\bar{p}A$ collisions
PANDA Experiment

- Cooled antiproton beam @HESR
 - $1.5 \text{ GeV/c} < p < 15 \text{ GeV/c}$
 - $\Delta p/p < 10^{-4}$

- Study strong interaction
 - Multi-s and c hadron spectroscopy
 - Exotic states
 - Nucleon structure
 - $\bar{p}A$ collisions
PANDA Experiment

- Cooled antiproton beam @HESR
 - $1.5 \text{ GeV/c} < p < 15 \text{ GeV/c}$
 - $\Delta p/p < 10^{-4}$

- Study strong interaction
 - Multi- s and c hadron spectroscopy
 - Exotic states
 - Nucleon structure
 - $\bar{p}A$ collisions

→ Precise event timing
→ Charged particles tracking
 - primary and displaced vertices
PANDA Experiment

- Cooled antiproton beam @HESR
 - $1.5 \text{ GeV/c} < p < 15 \text{ GeV/c}$
 - $\Delta p/p < 10^{-4}$
- Study strong interaction
 - Multi-s and c hadron spectroscopy
 - Exotic states
 - Nucleon structure
 - $\bar{p}A$ collisions
- Precise event timing
- Charged particles tracking
 - primary and displaced vertices
PANDA Experiment

- Cooled antiproton beam @HESR
 - $1.5 \, \text{GeV/c} < p < 15 \, \text{GeV/c}$
 - $\Delta p/p < 10^{-4}$
- Study strong interaction
 - Multi-s and c hadron spectroscopy
 - Exotic states
 - Nucleon structure
 - pA collisions
 - Precise event timing
 - Charged particles tracking
 - primary and displaced vertices

- Spatial resolution $< 100 \, \mu\text{m}$
- Time resolution $< 10 \, \text{ns}$
- Continuous readout
PANDA Experiment

- Cooled antiproton beam @HESR
 - $1.5 \text{ GeV/c} < p < 15 \text{ GeV/c}$
 - $\Delta p/p < 10^{-4}$
- Study strong interaction
 - Multi-s and c hadron spectroscopy
 - Exotic states
 - Nucleon structure
 - pA collisions
- Precise event timing
- Charged particles tracking
 - primary and displaced vertices
- Custom front-end chips
 - ToPix, PASTA

- Spatial resolution $< 100 \mu\text{m}$
- Time resolution $< 10 \text{ ns}$
- Continuous readout
PANDA Experiment

- Cooled antiproton beam @HESR
 - $1.5 \text{ GeV/c} < p < 15 \text{ GeV/c}$
 - $\Delta p/p < 10^{-4}$
- Study strong interaction
 - Multi-s and c hadron spectroscopy
 - Exotic states
 - Nucleon structure
 - pA collisions
 → Precise event timing
 → Charged particles tracking
 - primary and displaced vertices
- Custom front-end chips
 → ToPix, PASTA

Versatile data acquisition system for the different front-end prototypes

- Spatial resolution < 100 μm
- Time resolution < 10 ns
- Continuous readout
PANDA Experiment

- Cooled antiproton beam @HESR
 - $1.5 \text{ GeV/c} < p < 15 \text{ GeV/c}$
 - $\Delta p/p < 10^{-4}$
- Study strong interaction
 - Multi-s and c hadron spectroscopy
 - Exotic states
 - Nucleon structure
 - $\overline{p}A$ collisions
 ➔ Precise event timing
 ➔ Charged particles tracking
 - primary and displaced vertices
- Custom front-end chips
 ➔ ToPix, PASTA

Versatile data acquisition system for the different front-end prototypes

Jülich Digital Readout System

- Spatial resolution $< 100 \mu m$
- Time resolution $< 10 \text{ ns}$
- Continuous readout
PASTA and JDRS

PASTA
- Time-over-threshold: time + charge measurement
 - low threshold: leading edge time stamp
 - high threshold: deposited charge

Self trigger capability

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of channels</td>
<td>64</td>
</tr>
<tr>
<td>Frequency</td>
<td>160 MHz</td>
</tr>
<tr>
<td>Time resolution</td>
<td>6.25 ns</td>
</tr>
</tbody>
</table>
PASTA and JDRS

PASTA
• Time-over-threshold: time + charge measurement
 - low threshold: leading edge time stamp
 - high threshold: deposited charge

Self trigger capability

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of channels</td>
<td>64</td>
</tr>
<tr>
<td>Frequency</td>
<td>160 MHz</td>
</tr>
<tr>
<td>Time resolution</td>
<td>6.25 ns</td>
</tr>
</tbody>
</table>
PASTA and JDRS

PASTA

- Time-over-threshold: time + charge measurement
 - low threshold: leading edge time stamp
 - high threshold: deposited charge

Self trigger capability

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of channels</td>
<td>64</td>
</tr>
<tr>
<td>Frequency</td>
<td>160 MHz</td>
</tr>
<tr>
<td>Time resolution</td>
<td>6.25 ns</td>
</tr>
</tbody>
</table>

JDRS

- Data flow
 - Encoded event data in PASTA
 - First processing and storing in FPGA register
 - Transfer to PC and further processing
PASTA and JDRS

PASTA

- Time-over-threshold: time + charge measurement
 - low threshold: leading edge time stamp
 - high threshold: deposited charge

Self trigger capability

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of channels</td>
<td>64</td>
</tr>
<tr>
<td>Frequency</td>
<td>160 MHz</td>
</tr>
<tr>
<td>Time resolution</td>
<td>6.25 ns</td>
</tr>
</tbody>
</table>

JDRS

- Data flow
 - Encoded event data in PASTA
 - First processing and storing in FPGA register
 - Transfer to PC and further processing
Integration of PASTA in the JDRS

- Former version of JDRS (ToPix)
 - Lack of modularity and flexibility
Integration of PASTA in the JDRS

- Former version of JDRS (ToPix)
 - Lack of modularity and flexibility
Integration of PASTA in the JDRS

- Former version of JDRS (ToPix)
 - Lack of modularity and flexibility

- Restructuring of the code
 - Use multiple interconnected modules
 - Separate reusable modules from ASIC specific
Integration of PASTA in the JDRS

• Former version of JDRS (ToPix)
 - Lack of modularity and flexibility

• Restructuring of the code
 - Use multiple interconnected modules
 - Separate reusable modules from ASIC specific

• Communication to and from PASTA
 - Configuration operations
 - Data collection and processing
Integration of PASTA in the JDRS

- Former version of JDRS (ToPix)
 - Lack of modularity and flexibility

- Restructuring of the code
 - Use multiple interconnected modules
 - Separate reusable modules from ASIC specific

- Communication to and from PASTA
 - Configuration operations
 - Data collection and processing
Integration of PASTA in the JDRS

- Former version of JDRS (ToPix)
 - Lack of modularity and flexibility

- Restructuring of the code
 - Use multiple interconnected modules
 - Separate reusable modules from ASIC specific

- Communication to and from PASTA
 - Configuration operations
 - Data collection and processing

More than 1000 parameters to tune
Integration of PASTA in the JDRS

- Former version of JDRS (ToPix)
 - Lack of modularity and flexibility

- Restructuring of the code
 - Use multiple interconnected modules
 - Separate reusable modules from ASIC specific

- Communication to and from PASTA
 - Configuration operations
 - Data collection and processing

More than 1000 parameters to tune

Automatic routines
Evaluation of the Performance of PASTA

- Internal injection
 - Channel response

![Channel Response for Analog Injection (20 fC)](image)

reduced ε in 10% of ch
Evaluation of the Performance of PASTA

- Internal injection
 - Channel response
 - Threshold calibration
 - differential scheme ($\text{th}_+ - \text{th}_- \geq 0$)
Evaluation of the Performance of PASTA

- Internal injection
 - Channel response
 - Threshold calibration
 - differential scheme \((\text{th}_+ - \text{th}_- \geq 0)\)
 - Linearity of the front-end

![ToT Distribution VS Pulse Amplitude](image)

Single channel

<table>
<thead>
<tr>
<th>Entries</th>
<th>59</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu)</td>
<td>0.637 ± 0.078</td>
</tr>
<tr>
<td>P1</td>
<td>25.27 ± 0.03</td>
</tr>
</tbody>
</table>

Good linearity
Residuals within detector resolution

![Channel Response for Analog Injection (20 fC)](image)

reduced \(\epsilon\) in 10% of ch
Evaluation of the Performance of PASTA

- Internal injection
 - Channel response
 - Threshold calibration
 - differential scheme ($\text{th}_+ - \text{th}_- \geq 0$)
- Linearity of the front-end
- Proton beam
Evaluation of the Performance of PASTA

- Internal injection
 - Channel response
 - Threshold calibration
 - differential scheme \((th_+ - th_- \geq 0)\)
 - Linearity of the front-end
- Proton beam
Evaluation of the Performance of PASTA

- **Internal injection**
 - Channel response
 - Threshold calibration
 - differential scheme ($th_+ - th_- \geq 0$)
 - Linearity of the front-end
- **Proton beam**
 - Frequency-dependent response

![Channel Response](image1)

![ToT Distribution VS Pulse Amplitude](image2)

![Single channel](image3)
Evaluation of the Performance of PASTA

- **Internal injection**
 - Channel response
 - Threshold calibration
 - differential scheme \((\text{th}_+ - \text{th}_- \geq 0)\)
 - Linearity of the front-end
- **Proton beam**
 - Frequency-dependent response

Channel Response

Non-flat \(\varepsilon\) across the channels → threshold effects

ToT Distribution VS Pulse Amplitude

- Good linearity
- Residuals within detector resolution

Ch Response to Global Threshold

- Channel number
- Entries 5593276

- Channel Response for Analog Injection (20 FC)
- Channel Response to Global Threshold (5 FC)
- Ch Response to Global Threshold (2 FC)

Reduced \(\varepsilon\) in 10% of ch

- Single channel
- Non-flat \(\varepsilon\) across the channels
Evaluation of the Performance of PASTA

- Internal injection
 - Channel response
 - Threshold calibration
 - differential scheme \((th_+ - th_- \geq 0)\)
 - Linearity of the front-end
- Proton beam
 - Frequency-dependent response

Channel Response

Similar patterns per ch
\(\varepsilon\) reduced @50 MHz

ToT Distribution VS Pulse Amplitude

Good linearity
Residuals within detector resolution
Evaluation of the Performance of PASTA

- Internal injection
 - Channel response
 - Threshold calibration
 - differential scheme \((\text{th}^+ - \text{th}^- \geq 0)\)
 - Linearity of the front-end
- Proton beam
 - Frequency-dependent response
Evaluation of the Performance of PASTA

- **Internal injection**
 - Channel response
 - Threshold calibration
 - differential scheme \((\text{th}_+ - \text{th}_- \geq 0)\)
 - Linearity of the front-end
- **Proton beam**
 - Frequency-dependent response
Evaluation of the Performance of PASTA

- Internal injection
 - Channel response
 - Threshold calibration
 - differential scheme ($\text{th}_+ - \text{th}_- \geq 0$)
 - Linearity of the front-end
- Proton beam
 - Frequency-dependent response
Evaluation of the Performance of PASTA

- Internal injection
 - Channel response
 - Threshold calibration
 - differential scheme \((\text{th}_+ - \text{th}_- \geq 0)\)
 - Linearity of the front-end
- Proton beam
 - Frequency-dependent response
Evaluation of the Performance of PASTA

- **Internal injection**
 - Channel response
 - Threshold calibration
 - differential scheme \((\text{th}_+ - \text{th}_- \geq 0)\)
 - Linearity of the front-end
- **Proton beam**
 - Frequency-dependent response

\[\varepsilon \text{ reduced above 80 MHz} \]

\[\text{Entries} \quad 5593276 \]
Evaluation of the Performance of PASTA

- **Internal injection**
 - Channel response
 - Threshold calibration
 - differential scheme \((\text{th}_+ - \text{th}_- \geq 0)\)
 - Linearity of the front-end
- **Proton beam**
 - Frequency-dependent response

- **Data acquisition system**
 - Modular integration of PASTA in the JDRS
 - User-friendly GUI
 - Stable operation (incl. in-beam)

- **PASTA**
 - Principle of operation verified
 - Operation of individual channel
 - Critical optimization of global settings
 - Frequency-related issues
 - Significant input for PASTA 2.0