Update on the CN based Event Builder

Milan Wagner, Christopher Hahn, Wolfgang Kühn, Sören Lange, Björn Spruck
Justus Liebig Universität Gießen

This work was supported in part by BMBF (06G19107I), HGS-HIRe for FAIR and the LOEWE-Zentrum HICforFAIR.
• test of the new CN
• change from UDP to Aurora
• status of the event builder
• TRBnet data generator current and future
• 8 new CN arrived at Gießen
 - 5 for Belle II
 - 3 for Panda + 2 obtain back from Belle II
• tested following parts (mostly done by Björn Spruck)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seriell</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>RAM1</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>RAM2</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PPC</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>FLASH</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PROM</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>OPT 1 (3.125 Gb/s)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>OPT 2 (3.125 Gb/s)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>OPT 3 (3.125 Gb/s)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>OPT 4 (3.125 Gb/s)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Ethernet</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Backplane (3.125 Gb/s)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Linux (on PPC)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
x-rayed the defect boards:

- Short a the connection of flash of board #4
- Short a the connection of flash of board #5
- Short a the connection of RAM of board #2

try to fix them in Gießen
If not possible, we have to send them back to IHEP
μTCA

- 1 xFP v3
 - 4 Inputs 3.125Gb/s
 - 1 Output Gb-Ethernet

MicroTCA.0 System, Cube(Schroff)
Including one xFP and 1 MCH

Kontron AM4901 MCH

CP xFPv3
• change from UPD → Aurora
 – Because of the Ethernet MAC
• not needed by using Aurora
 – Easier for the CN
 – Problem: not easy to implement on TRB3
• change back to UDP
 – Grzegorz Korcyl managed yesterday

Schematic of the xFPv3
• Tested burst builder:
 • Simulation using ISIM
 • Test bench 2 inputs
 • Ok
 • Test bench 4 inputs
 • Loose sometimes last word
 • Due to a wrong assignment of the LL-interface
 • TRBnet data generator 2 inputs
 • Ok

• On hardware:
 • 2 inputs UDP
 • OK
 • 2 inputs TCP/IP
 • 3 times the data
 • work in progress
• TRBnet data generator: currently
 • x inputs
 • random data
 • sbn = counter
 • the probability which of the input is used or if more are used, is equally distributed
 • generates the input files and the output files for comparison
• TRBnet data generator: future (Bachelor theses Christopher Hahn)
 • using Panda-root
Thanks for your attention