Introduction	Cooling system	Open Issues	Summary
●0	0000	0000	00

EMC cooling machine prototype

Tobias Triffterer

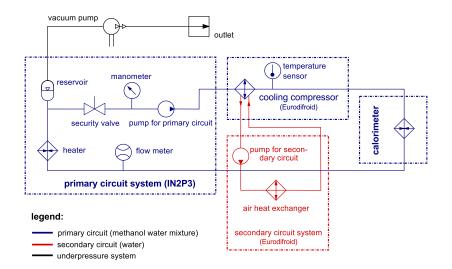
Experimentelle Hadronenphysik Ruhr-Universität Bochum

LIV. PANDA Collaboration Meeting 08th September 2015

 Introduction
 Cooling system
 Open Issues
 Summary

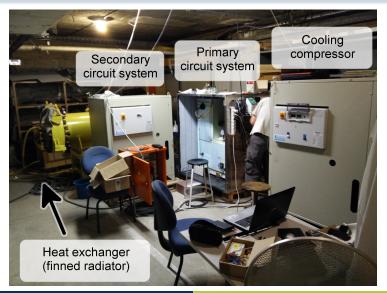
 o●
 0000
 000
 00

Purpose of the cooling system prototype


- Cooling system intended to be used for testing of the forward endcap EMC at FZ Jülich
- Capable of cooling the complete endcap and one barrel slice
- Cooling system for the complete EMC: Scaled-up version of this system (if everything works as intended)
- Work sharing:
 - Hardware designed and built by IN2P3 Orsay
 - Control software created by EP1 Bochum
 - Chiller and heat exchanger bought from French company Eurodifroid
- Total value: \approx 52,000 \in (mostly paid by Gießen)

Introduction	Cooling system	Open Issues	Summary
00	●000	0000	00
Technical data			

- Power of cooling compressor: 5 kW
- Power of main pump: 1.5 kW
- Underpressure system
- Two circuits connected to chiller:
 - Primary circuit: Coolant flowing through calorimeter
 - Secondary circuit: Transports heat from cooling compressor to heat exchanger outside (Alternative: Direct connection to cooling water supply of experiment hall)
- Cooling agent primary circuit: Methanol-water mixture
- Operating temperature: -32 °C
- Reservoir of pprox 330 L
- Cooling agent secondary circuit: Water


Introduction	Cooling system	Open Issues	Summary
00	0●00	0000	00

Preliminary schematic diagram

	Cooling system	Open Issues	Summary
00	0000	0000	00

Panorama photo of the setup

Introduction	Cooling system	Open Issues	Summary
00	000●		00

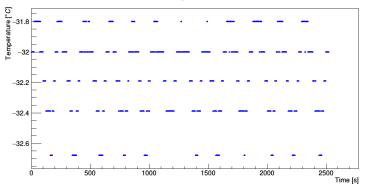
Control system

- Raspberry Pi in switchboard
- Relais connected to its GPIOs
- USB-RS485 adapters connected to USB
- Control of pump, flow meter, chiller
- EPICS (DCS software) running on Raspberry Pi
- Connection to rest of DCS via network

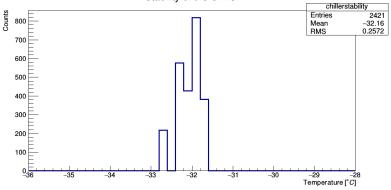
Introduction 00	Cooling system 0000	Open Issues ●000	Summary 00
Cooling flow			

- Primary circuit filled with glycol (Ethan-1,2-diol) at IN2P3
- Flow at $T = -32 \,^{\circ}\text{C}$ with current pump setup: $10 \, \frac{\text{L}}{\text{min}}$
- Experience (IN2P3): Factor 2 for methanol-water, i.e. 20 L/min
- Requirement for forward endcap: 200 $\frac{L}{min}$
- Remote control unit for pump has been ordered today
- Flow can be increased
- Maximum for pump 5.8 $\frac{m^3}{h} \approx 97 \frac{L}{min}$?
- Issue will be investigated when chiller is in Bochum

Introduction	Cooling system	Open Issues	Summary
00		○●○○	00
	•		


Internal insulation

- Primary circuit system insulated by large foam box
- $\bullet \ \, \text{Air inside} \Longrightarrow \text{ice}$
- Insulation will be reworked in Bochum


- Measured for 42 minutes at $T = -32 \,^{\circ}\text{C}$
- Started ca. 30 minutes after reaching target temperature
- Measurement dominated by resolution of chiller sensor

Chiller temperature vs. time

- Parameters of chiller regulation can be edited
- Will check if stability can be improved (better parameters or temperature sensor), but already $\frac{\sigma_{\rm rms}}{\langle T \rangle} \approx 0.1 \%$

Stability of the Chiller

Introduction 00	Cooling system	Open Issues 0000	Summary ●○
Summary &	Outlook		

- Cooling system works generally
- Software written for the chiller tested successfully
- Expected arrival in Bochum: Week 39 (21st-25th September)
- Several issues to be sorted out before cooling system is usable for endcap preassembly
- Issue solving will begin in October

Introduction 00	Cooling system	Open Issues 0000	Summary ⊙●
The End			

Thank you for your attention!

